Cell therapy based on stem cells or their extracellular vesicles during kidney graft preservation: Current state of the art and novelties

Nessma Chenaf-Benabdelmoumene , Thierry Hauet , Clara Steichen

Clinical and Translational Discovery ›› 2025, Vol. 5 ›› Issue (2) : e70040

PDF
Clinical and Translational Discovery ›› 2025, Vol. 5 ›› Issue (2) : e70040 DOI: 10.1002/ctd2.70040
INVITED LETTER

Cell therapy based on stem cells or their extracellular vesicles during kidney graft preservation: Current state of the art and novelties

Author information +
History +
PDF

Cite this article

Download citation ▾
Nessma Chenaf-Benabdelmoumene, Thierry Hauet, Clara Steichen. Cell therapy based on stem cells or their extracellular vesicles during kidney graft preservation: Current state of the art and novelties. Clinical and Translational Discovery, 2025, 5(2): e70040 DOI:10.1002/ctd2.70040

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Organisation Mondiale de la Santé 75ème assemblée mondiale de la santé. Transplantation d’organes et de tissus humains. Rapport du Directeur Général, Point 27.2 à l’ordre du Jour, A75/41. 12 avril 2022.

[2]

Global Observatory on Donation and Transplantation. International report on organ donation and transplantation activities 2022. Global Observatory on Donation and Transplantation Official Site. 2023.

[3]

DufourL, FerhatM, RobinA, et al. Ischémie reperfusion en transplantation rénale. Néphrol Thérap. 2020;16(6):388-399. doi:10.1016/j.nephro.2020.05.001

[4]

HauetT, PisaniDF. New strategies protecting from ischemia/reperfusion. Int J Mol Sci. 2022;23(24):15867.

[5]

VaziriN, Thuillier R, FavreauFD, et al. Analysis of machine perfusion benefits in kidney grafts: a preclinical study. J Transl Med. 2011;9:15.

[6]

TingleSJ, Thompson ER, FigueiredoRS, et al. Normothermic and hypothermic machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev. 2024;7(7):CD011671.

[7]

HosgoodSA, Callaghan CJ, WilsonCH, et al. Normothermic machine perfusion versus static cold storage in donation after circulatory death kidney transplantation: a randomized controlled trial. Nat Med. 2023;29(6):1511-1519.

[8]

ReddySP, Brockmann J, FriendPJ. Normothermic perfusion—a mini-review. Transplantation. 2009;87(5):631-632.

[9]

HosgoodSA, Nicholson ML. Current basic research in normothermic machine perfusion. Eur Surg Res. 2024;65(1):137-145.

[10]

JacobsSA, Pinxteren J, RoobrouckVD, et al. Human multipotent adult progenitor cells are nonimmunogenic and exert potent immunomodulatory effects on alloreactive T-cell responses. Cell Transplant. 2013;22(10):1915-1928.

[11]

LuijmesSH, Verstegen MMA, HoogduijnMJ, et al. The current status of stem cell-based therapies during ex vivo graft perfusion: an integrated review of four organs. Am J Transplant. 2022;22(12):2723-2739.

[12]

BrasileL, HenryN, OrlandoG, et al. Potentiating renal regeneration using mesenchymal stem cells. Transplantation. 2019;103(2):307-313.

[13]

LohmannS, PoolMBF, RozenbergKM, et al. Mesenchymal stromal cell treatment of donor kidneys during ex vivo normothermic machine perfusion: a porcine renal autotransplantation study. Am J Transplant. 2021;21(7):2348-2359.

[14]

ThompsonER, BatesL, IbrahimIK, et al. Novel delivery of cellular therapy to reduce ischemia reperfusion injury in kidney transplantation. Am J Transplant. 2021;21(4):1402-1414.

[15]

BurdeyronP, GiraudS, HauetT, Steichen C. Urine-derived stem/progenitor cells: a focus on their characterization and potential. World J Stem Cells. 2020;12(10):1080-1096.

[16]

ArcolinoFO, Hosgood S, AkalayS, et al. De novo SIX2 activation in human kidneys treated with neonatal kidney stem/progenitor cells. Am J Transplant. 2022;22(12):2791-2803.

[17]

ArcolinoFO, ZiaS, HeldK, et al. Urine of preterm neonates as a novel source of kidney progenitor cells. J Am Soc Nephrol. 2016;27(9):2762.

[18]

SharmaAK, Laubach VE. Protecting donor livers during normothermic machine perfusion with stem cell extracellular vesicles. Transplantation. 2018;102(5):725-726.

[19]

WelshJA, Goberdhan DCI, O’DriscollL, et al. Minimal information for studies of extracellular vesicles (MISEV2023):from basic to advanced approaches. J Extracellular Vesicles. 2024;13(2):e12404.

[20]

Yáñez-MóM, SiljanderPRM, AndreuZ, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracellular Vesicles. 2015;4:27066. doi:10.3402/jev.v4.27066

[21]

AbintiM, FaviE, AlfieriCM, et al. Update on current and potential application of extracellular vesicles in kidney transplantation. Am J Transplant. 2023;23(11):1673-1693.

[22]

ZhangY, WangJ, YangB, et al. Transfer of microRNA-216a-5p from exosomes secreted by human urine-derived stem cells reduces renal ischemia/reperfusion injury. Front Cell Develop Biol. 2020;22(8):610587.

[23]

YangB, WangJ, QiaoJ, et al. Circ DENND4C inhibits pyroptosis and alleviates ischemia-reperfusion acute kidney injury by exosomes secreted from human urine-derived stem cells. Chem Biol Interact. 2024;391:110922.

[24]

BurdeyronP, GiraudS, LepoittevinM, et al. Dynamic conditioning of porcine kidney grafts with extracellular vesicles derived from urine progenitor cells: a proof-of-concept study. Clin Transl Med. 2024;14(12):e70095.

[25]

GiraudS, Favreau F, ChatauretN, ThuillierR, MaigaS, HauetT. Contribution of large pig for renal ischemia-reperfusion and transplantation studies: the preclinical model. J Biomed Biotechnol. 2011;2011:532127.

[26]

MontgomeryRA, SternJM, LonzeBE, et al. Results of two cases of pig-to-human kidney xenotransplantation. New Engl J Med. 2022;386(20):1889-1898.

[27]

HiltbrunnerS, Larssen P, EldhM, et al. Exosomal cancer immunotherapy is independent of MHC molecules on exosomes. Oncotarget. 2016;7(25):38707-38717.

[28]

TangTT, WangB, WuM, et al. Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. Sci Adv. 2020;6(33):eaaz0748.

[29]

LinKC, YipHK, ShaoPL, et al. Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia–reperfusion injury. Int J Cardiol. 2016;216:173-185.

[30]

van NielG, CarterDRF, ClaytonA, Lambert DW, RaposoG, VaderP. Challenges and directions in studying cell–cell communication by extracellular vesicles. Nat Rev Mol Cells Biol. 2022;23(5):369-382.

[31]

XiangH, BaoC, ChenQ, et al. Extracellular vesicles (EVs)’ journey in recipient cells: from recognition to cargo release. J Zhejiang Univ Sci B. 2024;25(8):633-655.

[32]

GurungS, Perocheau D, TouramanidouL, BaruteauJ. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19(1):47.

[33]

Cerezo-MagañaM, Christianson HC, van KuppeveltTH, Forsberg-NilssonK, Belting M. Hypoxic induction of exosome uptake through proteoglycan-dependent endocytosis fuels the lipid droplet phenotype in glioma. Mol Cancer Res. 2021;19(3):528-540.

[34]

Durak-KozicaM, BasterZ, KubatK, Stępień E. 3D visualization of extracellular vesicle uptake by endothelial cells. Cell Mol Biol Lett. 2018;23:57.

[35]

EveraertC, Helsmoortel H, DecockA, et al. Performance assessment of total RNA sequencing of human biofluids and extracellular vesicles. Sci Rep. 2019;9(1):17574.

[36]

CaoJY, WangB, TangTT, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics. 2021;11(11):5248-5266.

[37]

LiX, LiaoJ, SuX, et al. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1. Theranostics. 2020;10(21):9561-9578.

[38]

CollinoF, LopesJA, CorrêaS, et al. Adipose-derived mesenchymal cells under hypoxia: changes in extracellular vesicles secretion and improvement of renal recovery after ischemic injury. Cell Physiol Biochem. 2019;52(6):1463-1483.

[39]

ZhuF, Chong Lee Shin OLS, PeiG, et al. Adipose-derived mesenchymal stem cells employed exosomes to attenuate AKI-CKD transition through tubular epithelial cell dependent Sox9 activation. Oncotarget. 2017;8(41):70707-70726.

[40]

ZouX, GuD, ZhangG, et al. NK cell regulatory property is involved in the protective role of MSC-derived extracellular vesicles in renal ischemic reperfusion injury. Human Gene Therapy. 2016;27(11):926-935.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Discovery published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/