Epigenetic regulation of Epstein–Barr virus: From bench to bedside

Xiao Gao , Hao-Xu Yang , Shu Cheng , Hua-Man Cai , Jie Xiong , Wei-Li Zhao

Clinical and Translational Discovery ›› 2024, Vol. 4 ›› Issue (5) : e357

PDF
Clinical and Translational Discovery ›› 2024, Vol. 4 ›› Issue (5) :e357 DOI: 10.1002/ctd2.357
REVIEW ARTICLE

Epigenetic regulation of Epstein–Barr virus: From bench to bedside

Author information +
History +
PDF

Abstract

Background: Epstein–Barr virus (EBV) is a double-stranded DNA herpesvirus and establishes life-long infection in 95% of the world’s populations.

Main body: EBV is critically involved in multiple diseases. Aberrant signaling pathways, immune escape, and metabolic reprogramming play essential roles in EBV-mediated pathogenesis. However, the underlying mechanisms have not yet been fully elucidated. Here we reviewed recent advances on the epigenetic regulation of EBV pathogenesis, which may translate to potential therapeutic strategies in EBV-associated diseases.

Conclusion: Growing evidence has suggested that viral infections reconstruct epigenome to modulate gene expression both in the host and the virus levels.

Keywords

epigenetic / Epstein–Barr virus / histone / immune escape / metabolic reprogramming / pathogenesis / targeted therapy

Cite this article

Download citation ▾
Xiao Gao, Hao-Xu Yang, Shu Cheng, Hua-Man Cai, Jie Xiong, Wei-Li Zhao. Epigenetic regulation of Epstein–Barr virus: From bench to bedside. Clinical and Translational Discovery, 2024, 4(5): e357 DOI:10.1002/ctd2.357

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DamaniaB, KenneySC, Raab-TraubN. Epstein–Barr virus: biology and clinical disease. Cell. 2022;185(20):3652-3670.

[2]

YoungLS, YapLF, MurrayPG. Epstein–Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer. 2016;16(12):789-802.

[3]

HadinotoV, Shapiro M, GreenoughTC, SullivanJL, Luzuriaga K, Thorley-LawsonDA. On the dynamics of acute EBV infection and the pathogenesis of infectious mononucleosis. Blood. 2008;111(3):1420-1427.

[4]

KwongYL, PangAW, LeungAY, Chim CS, TseE. Quantification of circulating Epstein–Barr virus DNA in NK/T-cell lymphoma treated with the SMILE protocol: diagnostic and prognostic significance. Leukemia. 2014;28(4):865-870.

[5]

SmithNA, Coleman CB, GewurzBE, RochfordR. CD21 (complement receptor 2) is the receptor for Epstein–Barr virus entry into T cells. J Virol. 2020;94(11):e00428-20.

[6]

BaldariCT, OnnisA, AndreanoE, Del Giudice G, RappuoliR. Emerging roles of SARS-CoV-2 Spike-ACE2 in immune evasion and pathogenesis. Trends Immunol. 2023;44(6):424-434.

[7]

ZanelliM, Parente P, SanguedolceF, et al. Intravascular NK/T-cell lymphoma: what we know about this diagnostically challenging, aggressive disease. Cancers (Basel). 2022;14(21):5458.

[8]

Shannon-LoweC, Rickinson A. The global landscape of EBV-associated tumors. Front Oncol. 2019;9:713.

[9]

ParvanehN, Filipovich AH. Borkhardt A. Primary immunodeficiencies predisposed to Epstein–Barr virus-driven haematological diseases. Br J Haematol. 2013;162(5):573-586.

[10]

TangyeSG, Palendira U, EdwardsES. Human immunity against EBV-lessons from the clinic. J Exp Med. 2017;214(2):269-283.

[11]

GrossmanWJ, Verbsky JW, TollefsenBL, KemperC, Atkinson JP, LeyTJ. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood. 2004;104(9):2840-2848.

[12]

MazzoniA, Salvati L, MaggiL, et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J Clin Invest. 2020;130(9):4694-4703.

[13]

PalendiraU, Rickinson AB. Primary immunodeficiencies and the control of Epstein–Barr virus infection. Ann NY Acad Sci. 2015;1356:22-44.

[14]

LeadbetterEA, Karlsson MCI. Invariant natural killer T cells balance B cell immunity. Immunol Rev. 2021;299(1):93-107.

[15]

NagyN, AdoriM, RasulA, et al. Soluble factors produced by activated CD4+ T cells modulate EBV latency. Proc Natl Acad Sci USA. 2012;109(5):1512-1517.

[16]

Ruiz-PablosM. CD4+ cytotoxic T cells involved in the development of EBV-associated diseases. Pathogens. 2022;11(8):831.

[17]

SoldanSS, Lieberman PM. Epstein–Barr virus and multiple sclerosis. Nat Rev Microbiol. 2023;21(1):51-64.

[18]

SyrykhC, Péricart S, LamaisonC, EscudiéF, Brousset P, LaurentC. Epstein–Barr virus-associated T-and NK-cell lymphoproliferative diseases: a review of clinical and pathological features. Cancers (Basel). 2021;13(13):3315.

[19]

CaoY, XieL, ShiF, et al. Targeting the signaling in Epstein–Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduction Target Ther. 2021;6(1):15.

[20]

DheekolluJ, Wiedmer A, AyyanathanK, DeakyneJS, Messick TE, LiebermanPM. Cell-cycle-dependent EBNA1-DNA crosslinking promotes replication termination at oriP and viral episome maintenance. Cell. 2021;184(3):643-654.e613.

[21]

MessickTE, SmithGR, SoldanSS, et al. Structure-based design of small-molecule inhibitors of EBNA1 DNA binding blocks Epstein–Barr virus latent infection and tumor growth. Sci Transl Med. 2019;11(482):eaau5612.

[22]

AndersonLJ, Longnecker R. Epstein–Barr virus latent membrane protein 2A exploits Notch1 to alter B-cell identity in vivo. Blood. 2009;113(1):108-116.

[23]

LiZ, Baccianti F, DelecluseS, et al. The Epstein–Barr virus noncoding RNA EBER2 transactivates the UCHL1 deubiquitinase to accelerate cell growth. Proc Natl Acad Sci USA. 2021;118(43):e2115508118.

[24]

KangMS, KieffE. Epstein–Barr virus latent genes. Exp Mol Med. 2015;47(1):e131.

[25]

ZhaoB, ZouJ, WangH, et al. Epstein–Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci USA. 2011;108(36):14902-14907.

[26]

PortalD, ZhouH, ZhaoB, et al. Epstein–Barr virus nuclear antigen leader protein localizes to promoters and enhancers with cell transcription factors and EBNA2. Proc Natl Acad Sci USA. 2013;110(46):18537-18542.

[27]

PeiY, Banerjee S, JhaHC, SunZ, Robertson ES. An essential EBV latent antigen 3C binds Bcl6 for targeted degradation and cell proliferation. PLoS Pathog. 2017;13(7):e1006500.

[28]

OkunoY, MurataT, SatoY, et al. Defective Epstein–Barr virus in chronic active infection and haematological malignancy. Nat Microbiol. 2019;4(3):404-413.

[29]

PengRJ, HanBW, CaiQQ, et al. Genomic and transcriptomic landscapes of Epstein–Barr virus in extranodal natural killer T-cell lymphoma. Leukemia. 2019;33(6):1451-1462.

[30]

LiH, LiuS, HuJ, et al. Epstein–Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int J Biol Sci. 2016;12(11):1309-1318.

[31]

MaSD, HegdeS, YoungKH, et al. A new model of Epstein–Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol. 2011;85(1):165-177.

[32]

HsuM, WuSY, ChangSS, et al. Epstein–Barr virus lytic transactivator Zta enhances chemotactic activity through induction of interleukin-8 in nasopharyngeal carcinoma cells. J Virol. 2008;82(7):3679-3688.

[33]

GerminiD, SallFB, ShmakovaA, et al. Oncogenic properties of the EBV ZEBRA protein. Cancers (Basel). 2020;12(6):1479.

[34]

AdamsonAL, KenneyS. The Epstein–Barr virus BZLF1 protein interacts physically and functionally with the histone acetylase CREB-binding protein. J Virol. 1999;73(8):6551-6558.

[35]

LiuX, HongT, ParameswaranS, et al. Human virus transcriptional regulators. Cell. 2020;182(1):24-37.

[36]

ScottRS. Epstein–Barr virus: a master epigenetic manipulator. Curr Opin Virol. 2017;26:74-80.

[37]

TemperaI, Lieberman PM. Epigenetic regulation of EBV persistence and oncogenesis. Semin Cancer Biol. 2014;26:22-29.

[38]

ZhangY, JiangC, TrudeauSJ, et al. Histone loaders CAF1 and HIRA restrict Epstein–Barr virus B-cell lytic reactivation. mBio. 2020;11(5):e01063-20.

[39]

AndertonJA, BoseS, VockerodtM, et al. The H3K27me3 demethylase, KDM6B, is induced by Epstein–Barr virus and over-expressed in Hodgkin’s lymphoma. Oncogene. 2011;30(17):2037-2043.

[40]

SarkariF, Sanchez-Alcaraz T, WangS, HolowatyMN, ShengY, FrappierL. EBNA1-mediated recruitment of a histone H2B deubiquitylating complex to the Epstein–Barr virus latent origin of DNA replication. PLoS Pathog. 2009;5(10):e1000624.

[41]

BuschleA, Hammerschmidt W. Epigenetic lifestyle of Epstein–Barr virus. Semin Immunopathol. 2020;42(2):131-142.

[42]

WilleCK, Nawandar DM, PanfilAR, KoMM, Hagemeier SR, KenneySC. Viral genome methylation differentially affects the ability of BZLF1 versus BRLF1 to activate Epstein–Barr virus lytic gene expression and viral replication. J Virol. 2013;87(2):935-950.

[43]

RamasubramanyanS, Osborn K, FlowerK, SinclairAJ. Dynamic chromatin environment of key lytic cycle regulatory regions of the Epstein–Barr virus genome. J Virol. 2012;86(3):1809-1819.

[44]

CountrymanJK, Gradoville L, MillerG. Histone hyperacetylation occurs on promoters of lytic cycle regulatory genes in Epstein–Barr virus-infected cell lines which are refractory to disruption of latency by histone deacetylase inhibitors. J Virol. 2008;82(10):4706-4719.

[45]

SunL, ZhangH, GaoP. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 2022;13(12):877-919.

[46]

BauerM, Jasinski-Bergner S, MandelboimO, WickenhauserC, Seliger B. Epstein–Barr virus-associated malignancies and immune escape: the role of the tumor microenvironment and tumor cell evasion strategies. Cancers (Basel). 2021;13(20):5189.

[47]

FichesGN, ZhouD, KongW, et al. Profiling of immune related genes silenced in EBV-positive gastric carcinoma identified novel restriction factors of human gammaherpesviruses. PLoS Pathog. 2020;16(8):e1008778.

[48]

GlonD, VilmenG, PerdizD, et al. Essential role of hyperacetylated microtubules in innate immunity escape orchestrated by the EBV-encoded BHRF1 protein. PLoS Pathog. 2022;18(3):e1010371.

[49]

WangLW, ShenH, NobreL, et al. Epstein–Barr-virus-induced one-carbon metabolism drives B cell transformation. Cell Metab. 2019;30(3):539-555.e511.

[50]

ShiF, HeY, LiJ, et al. Wild-type IDH2 contributes to Epstein–Barr virus-dependent metabolic alterations and tumorigenesis. Mol Metab. 2020;36:100966.

[51]

BonglackEN, Messinger JE, CableJM, et al. Monocarboxylate transporter antagonism reveals metabolic vulnerabilities of viral-driven lymphomas. Proc Natl Acad Sci USA. 2021;118(25):e2022495118.

[52]

XiongJ, WangN, ZhongHJ, et al. SLC1A1 mediated glutamine addiction and contributed to natural killer T-cell lymphoma progression with immunotherapeutic potential. EBioMedicine. 2021;72:103614.

[53]

LyuX, WangJ, GuoX, et al. EBV-miR-BART1-5P activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner to promote glycolysis and angiogenesis in nasopharyngeal carcinoma. PLoS Pathog. 2018;14(12):e1007484.

[54]

GaballahA, Bartosch B. An update on the metabolic landscape of oncogenic viruses. Cancers (Basel). 2022;14(23):5742.

[55]

MengQ, SunH, WuS, et al. Epstein–Barr virus-encoded microRNA-BART18-3p promotes colorectal cancer progression by targeting de novo lipogenesis. Adv Sci (Weinh). 2022;9(35):e2202116.

[56]

GuoR, LiangJH, ZhangY, et al. Methionine metabolism controls the B cell EBV epigenome and viral latency. Cell Metab. 2022;34(9):1280-1297.e1289.

[57]

ShiF, ZhouM, ShangL, et al. EBV(LMP1)-induced metabolic reprogramming inhibits necroptosis through the hypermethylation of the RIP3 promoter. Theranostics. 2019;9(9):2424-2438.

[58]

AlaggioR, AmadorC, AnagnostopoulosI, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36(7):1720-1748.

[59]

KimuraH, ItoY, KawabeS, et al. EBV-associated T/NK-cell lymphoproliferative diseases in nonimmunocompromised hosts: prospective analysis of 108 cases. Blood. 2012;119(3):673-686.

[60]

JogNR, JamesJA. Epstein Barr virus and autoimmune responses in systemic lupus erythematosus. Front Immunol. 2020;11:623944.

[61]

BjornevikK, Cortese M, HealyBC, et al. Longitudinal analysis reveals high prevalence of Epstein–Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296-301.

[62]

FadlallahS, Hussein H, JalladMA, et al. Effect of Epstein–Barr virus DNA on the incidence and severity of arthritis in a rheumatoid arthritis mouse model. Front Immunol. 2021;12:672752.

[63]

AfrasiabiA, KeaneJT, OngLTC, et al. Genetic and transcriptomic analyses support a switch to lytic phase in Epstein Barr virus infection as an important driver in developing systemic lupus erythematosus. J Autoimmun. 2022;127:102781.

[64]

FechtnerS, BerensH, BemisE, et al. Antibody responses to Epstein–Barr virus in the preclinical period of rheumatoid arthritis suggest the presence of increased viral reactivation cycles. Arthritis Rheum. 2022;74(4):597-603.

[65]

BroenK, Dickens J, TrangucciR, et al. Burkitt lymphoma risk shows geographic and temporal associations with Plasmodium falciparum infections in Uganda, Tanzania, and Kenya. Proc Natl Acad Sci USA. 2023;120(2):e2211055120.

[66]

WienandK, ChapuyB, StewartC, et al. Genomic analyses of flow-sorted Hodgkin Reed–Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv. 2019;3(23):4065-4080.

[67]

WenigerMA, Küppers R. Molecular biology of Hodgkin lymphoma. Leukemia. 2021;35(4):968-981.

[68]

DonzelM, Bonjour M, CombesJD, et al. Lymphomas associated with Epstein–Barr virus infection in 2020:results from a large, unselected case series in France. EClinicalMedicine. 2022;54:101674.

[69]

KanavarosP, LescsMC, BrièreJ, et al. Nasal T-cell lymphoma: a clinicopathologic entity associated with peculiar phenotype and with Epstein–Barr virus. Blood. 1993;81(10):2688-2695.

[70]

YamaguchiM, SuzukiR, OguchiM. Advances in the treatment of extranodal NK/T-cell lymphoma, nasal type. Blood. 2018;131(23):2528-2540.

[71]

KüçükC, HuX, JiangB, et al. Global promoter methylation analysis reveals novel candidate tumor suppressor genes in natural killer cell lymphoma. Clin Cancer Res. 2015;21(7):1699-1711.

[72]

Raab-TraubN. Nasopharyngeal carcinoma: an evolving role for the Epstein–Barr virus. Curr Top Microbiol Immunol. 2015;390(Pt 1):339-363.

[73]

BruceJP, ToKF, LuiVWY, et al. Whole-genome profiling of nasopharyngeal carcinoma reveals viral-host co-operation in inflammatory NF-κB activation and immune escape. Nat Commun. 2021;12(1):4193.

[74]

MurerA, Rühl J, ZbindenA, et al. MicroRNAs of Epstein–Barr virus attenuate T-cell-mediated immune control in vivo. mBio. 2019;10(1):e01941-18.

[75]

ChenZH, YanSM, ChenXX, et al. The genomic architecture of EBV and infected gastric tissue from precursor lesions to carcinoma. Genome Med. 2021;13(1):146.

[76]

WongY, MeehanMT, BurrowsSR, Doolan DL, MilesJJ. Estimating the global burden of Epstein–Barr virus-related cancers. J Cancer Res Clin Oncol. 2022;148(1):31-46.

[77]

WangJ, GeJ, WangY, et al. EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1. Nat Commun. 2022;13(1):866.

[78]

BuglioD, Georgakis GV, HanabuchiS, et al. Vorinostat inhibits STAT6-mediated TH2 cytokine and TARC production and induces cell death in Hodgkin lymphoma cell lines. Blood. 2008;112(4):1424-1433.

[79]

DaltonT, Doubrovina E, PankovD, et al. Epigenetic reprogramming sensitizes immunologically silent EBV+ lymphomas to virus-directed immunotherapy. Blood. 2020;135(21):1870-1881.

[80]

YounesA, OkiY, BociekRG, et al. Mocetinostat for relapsed classical Hodgkin’s lymphoma: an open-label, single-arm, phase 2 trial. Lancet Oncol. 2011;12(13):1222-1228.

[81]

BatleviCL, Kasamon Y, BociekRG, et al. ENGAGE-501:phase II study of entinostat (SNDX-275) in relapsed and refractory Hodgkin lymphoma. Haematologica. 2016;101(8):968-975.

[82]

KimSJ, KimJH, KiCS, KoYH, KimJS, Kim WS. Epstein–Barr virus reactivation in extranodal natural killer/T-cell lymphoma patients: a previously unrecognized serious adverse event in a pilot study with romidepsin. Ann Oncol. 2016;27(3):508-513.

[83]

MesiaR, BossiP, HansenAR, et al. Phase II study of CC-486 (oral azacitidine) in previously treated patients with locally advanced or metastatic nasopharyngeal carcinoma. Eur J Cancer. 2019;123:138-145.

[84]

ProckopS, Doubrovina E, SuserS, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest. 2020;130(2):733-747.

[85]

SongY, WangJ, WangY, et al. PD-1 blockade and lenalidomide combination therapy for chronic active Epstein–Barr virus infection. Clin Microbiol Infect. 2023;29:796.e7-796.e13.

[86]

LiH, HuJ, LuoX, BodeAM, DongZ, Cao Y. Therapies based on targeting Epstein–Barr virus lytic replication for EBV-associated malignancies. Cancer Sci. 2018;109(7):2101-2108.

[87]

WeiCJ, BuW, NguyenLA, et al. A bivalent Epstein–Barr virus vaccine induces neutralizing antibodies that block infection and confer immunity in humanized mice. Sci Transl Med. 2022;14(643):eabf3685.

[88]

GuoM, DuanX, PengX, et al. A lipid-based LMP2-mRNA vaccine to treat nasopharyngeal carcinoma. Nano Res. 2023;16:5357-5367.

[89]

ChenYJ, ChenYL, ChangY, et al. Epstein–Barr virus Rta-mediated accumulation of DNA methylation interferes with CTCF binding in both host and viral genomes. J Virol. 2017;91(15):e00736-17.

[90]

SchaeffnerM, Mrozek-Gorska P, BuschleA, et al. BZLF1 interacts with chromatin remodelers promoting escape from latent infections with EBV. Life Sci Alliance. 2019;2(2):e201800108.

[91]

WilleCK, Nawandar DM, HenningAN, et al. 5-Hydroxymethylation of the EBV genome regulates the latent to lytic switch. Proc Natl Acad Sci USA. 2015;112(52):E7257-7265.

[92]

ChaoTY, ChengYY, WangZY, et al. Subcellular distribution of BALF2 and the role of Rab1 in the formation of Epstein–Barr virus cytoplasmic assembly compartment and virion release. Microbiol Spectr. 2023;11(1):e0436922.

[93]

SpiessK, FaresS, Sparre-UlrichAH, et al. Identification and functional comparison of seven-transmembrane G-protein-coupled BILF1 receptors in recently discovered nonhuman primate lymphocryptoviruses. J Virol. 2015;89(4):2253-2267.

[94]

AlmohammedR, OsbornK, RamasubramanyanS, et al. Mechanism of activation of the BNLF2a immune evasion gene of Epstein–Barr virus by Zta. J Gen Virol. 2018;99(6):805-817.

[95]

JochumS, RuissR, MoosmannA, Hammerschmidt W, ZeidlerR. RNAs in Epstein–Barr virions control early steps of infection. Proc Natl Acad Sci USA. 2012;109(21):E1396-E1404.

[96]

JochumS, Moosmann A, LangS, HammerschmidtW, Zeidler R. The EBV immunoevasins vIL-10 and BNLF2a protect newly infected B cells from immune recognition and elimination. PLoS Pathog. 2012;8(5):e1002704.

[97]

HorstD, Burmeister WP, BoerIG, et al. The “Bridge” in the Epstein–Barr virus alkaline exonuclease protein BGLF5 contributes to shutoff activity during productive infection. J Virol. 2012;86(17):9175-9187.

[98]

WuCC, LiuMT, ChangYT, et al. Epstein–Barr virus DNase (BGLF5) induces genomic instability in human epithelial cells. Nucleic Acids Res. 2010;38(6):1932-1949.

[99]

McKenzieJ, Lopez-Giraldez F, DelecluseHJ, WalshA, El-Guindy A. The Epstein–Barr virus immunoevasins BCRF1 and BPLF1 are expressed by a mechanism independent of the canonical late pre-initiation complex. PLoS Pathog. 2016;12(11):e1006008.

[100]

SuMT, WangYT, ChenYJ, Lin SF, TsaiCH, ChenMR. The SWI/SNF chromatin regulator BRG1 modulates the transcriptional regulatory activity of the Epstein–Barr virus DNA polymerase processivity factor BMRF1. J Virol. 2017;91(9):e02114-16.

[101]

SalamunSG, SitzJ, DeL, Cruz-Herrera CF, et al. The Epstein–Barr virus BMRF1 protein activates transcription and inhibits the DNA damage response by binding NuRD. J Virol. 2019;93(22):e01070-19.

[102]

ChengAZ, Yockteng-Melgar J, JarvisMC, et al. Epstein–Barr virus BORF2 inhibits cellular APOBEC3B to preserve viral genome integrity. Nat Microbiol. 2019;4(1):78-88.

[103]

AtkinsSL, MotaibS, WiserLC, et al. Small molecule screening identifies inhibitors of the Epstein–Barr virus deubiquitinating enzyme, BPLF1. Antiviral Res. 2020;173:104649.

[104]

LiJ, NagyN, LiuJ, et al. The Epstein–Barr virus deubiquitinating enzyme BPLF1 regulates the activity of topoisomerase II during productive infection. PLoS Pathog. 2021;17(9):e1009954.

[105]

BusseC, Feederle R, SchnölzerM, BehrendsU, Mautner J, DelecluseHJ. Epstein–Barr viruses that express a CD21 antibody provide evidence that gp350’s functions extend beyond B-cell surface binding. J Virol. 2010;84(2):1139-1147.

[106]

SoremJ, Jardetzky TS, LongneckerR. Cleavage and secretion of Epstein–Barr virus glycoprotein 42 promote membrane fusion with B lymphocytes. J Virol. 2009;83(13):6664-6672.

[107]

RessingME, van Leeuwen D, VerreckFA, et al. Epstein–Barr virus gp42 is posttranslationally modified to produce soluble gp42 that mediates HLA class II immune evasion. J Virol. 2005;79(2):841-852.

[108]

KirschnerAN, LowreyAS, LongneckerR, Jardetzky TS. Binding-site interactions between Epstein–Barr virus fusion proteins gp42 and gH/gL reveal a peptide that inhibits both epithelial and B-cell membrane fusion. J Virol. 2007;81(17):9216-9229.

[109]

JangraS, BhartiA, LuiWY, et al. Suppression of JAK-STAT signaling by Epstein–Barr virus tegument protein BGLF2 through recruitment of SHP1 phosphatase and promotion of STAT2 degradation. J Virol. 2021;95(20):e0102721.

[110]

LiuX, Sadaoka T, KrogmannT, CohenJI. Epstein–Barr virus (EBV) tegument protein BGLF2 suppresses type I interferon signaling to promote EBV reactivation. J Virol. 2020;94(11):e00258-20.

[111]

ChenT, WangY, XuZ, et al. Epstein–Barr virus tegument protein BGLF2 inhibits NF-κB activity by preventing p65 Ser536 phosphorylation. FASEB J. 2019;33(9):10563-10576.

[112]

MichurinaA, SakibMS, KerimogluC, et al. Postnatal expression of the lysine methyltransferase SETD1B is essential for learning and the regulation of neuron-enriched genes. EMBO J. 2022;41(1):e106459.

[113]

KouzaridesT. SnapShot: histone-modifying enzymes. Cell. 2007;131(4):822.

[114]

KutateladzeTG. SnapShot: histone readers. Cell. 2011;146(5):842-842.

[115]

ShaQQ, ZhangJ, FanHY. Function and regulation of histone H3 lysine-4 methylation during oocyte meiosis and maternal-to-zygotic transition. Front Cell Dev Biol. 2020;8:597498.

[116]

KouzaridesT. SnapShot: histone-modifying enzymes. Cell. 2007;128(4):802.

[117]

BaratchianM, TiwariR, KhalighiS, et al. H3K9 methylation drives resistance to androgen receptor-antagonist therapy in prostate cancer. Proc Natl Acad Sci USA. 2022;119(21):e2114324119.

[118]

KlaukeK, Radulović V, BroekhuisM, et al. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat Cell Biol. 2013;15(4):353-362.

[119]

JosephFM, YoungNL. Histone variant-specific post-translational modifications. Semin Cell Dev Biol. 2023;135:73-84.

[120]

BhaskaraS, Knutson SK, JiangG, et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell. 2010;18(5):436-447.

[121]

WangWW, Angulo-Ibanez M, LyuJ, et al. A click chemistry approach reveals the chromatin-dependent histone H3K36 deacylase nature of SIRT7. J Am Chem Soc. 2019;141(6):2462-2473.

[122]

SuD, HuQ, LiQ, et al. Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106. Nature. 2012;483(7387):104-107.

[123]

ChenJ, WangZ, GuoX, et al. TRIM66 reads unmodified H3R2K4 and H3K56ac to respond to DNA damage in embryonic stem cells. Nat Commun. 2019;10(1):4273.

[124]

BarbourH, DaouS, HendzelM, Affar EB. Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat Commun. 2020;11(1):5947.

[125]

SongH, ShenR, LiuX, et al. Histone post-translational modification and the DNA damage response. Genes Dis. 2023;10(4):1429-1444.

[126]

ZhengQ, Osunsade A, DavidY. Protein arginine deiminase 4 antagonizes methylglyoxal-induced histone glycation. Nat Commun. 2020;11(1):3241.

[127]

ZhangD, TangZ, HuangH, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575-580.

[128]

ZhengQ, OmansND, LeicherR, et al. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nat Commun. 2019;10(1):1289.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Discovery published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

283

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/