Nanomedicine: a frontier of the breast cancer treatment
Swarup Sonar, Sidhanti Nyahatkar, Ketki Kalele, Manab Deb Adhikari
Nanomedicine: a frontier of the breast cancer treatment
[1] |
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics. CA Cancer J Clin. 2023;73(1):17-48.
CrossRef
Google scholar
|
[2] |
Accessed February 18, 2024.
|
[3] |
Nirmala MJ, Kizhuveetil U, Johnson A, et al. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Adv. 2023;13(13):8606-8629.
CrossRef
Google scholar
|
[4] |
Alqaraghuli HGJ, Kashanian S, Rafipour R. A review on targeting nanoparticles for breast cancer. Curr Pharm Biotechnol. 2019;20(13):1087-1107.
CrossRef
Google scholar
|
[5] |
Gurunathan S, Thangaraj P, Wang L, Cao Q, Kim JH. Nanovaccines: an effective therapeutic approach for cancer therapy. Biomed Pharmacother. 2024;170:115992.
CrossRef
Google scholar
|
[6] |
Krishnamachari Y, Salem AK. Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv Drug Deliv Rev. 2009;61(3):205-217.
CrossRef
Google scholar
|
[7] |
Goforth R, Salem AK, Zhu X, et al. Immune stimulatory antigen loaded particles combined with depletion of regulatory T-cells induce potent tumor specific immunity in a mouse model of melanoma. Cancer Immunol Immunother. 2009;58(4):517-530.
CrossRef
Google scholar
|
[8] |
Rahman M, Afzal O, Ullah SNMN, et al. Nanomedicine-based drug-targeting in breast cancer: pharmacokinetics, clinical progress, and challenges. ACS Omega. 2023;8(51):48625-48649.
CrossRef
Google scholar
|
[9] |
Dai J, Su Y, Zhong S, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5(1):145.
CrossRef
Google scholar
|
[10] |
Mukherjee S, Dhar R, Jonnalagadda S, et al. Exosomal miRNAs and breast cancer: a complex theranostics interlink with clinical significance. Biomarkers. 2023;28(6):502-518.
CrossRef
Google scholar
|
[11] |
Wang X, Xu C, Hua Y, et al. Exosomes play an important role in the process of psoralen reverse multidrug resistance of breast cancer. J Exp Clin Cancer Res. 2016;35(1):186.
CrossRef
Google scholar
|
[12] |
Xie F, Zhou X, Su P, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13(1):4461.
CrossRef
Google scholar
|
[13] |
Wang L, Wang B, Wen H, et al. Exosomes: a rising star in breast cancer (Review). Oncol Rep. 2020;44(2):407-423.
CrossRef
Google scholar
|
[14] |
Ravipati S, Nath A, Banerjee S, et al. Theranostics aspect of extracellular vesicle in cancer liquid biopsy. J Liquid Biopsy. 2024;3:100139.
CrossRef
Google scholar
|
[15] |
Kulkarni M, Kar R, Ghosh S, et al. Clinical impact of multi-omics profiling of extracellular vesicles in cancer liquid biopsy. J Liquid Biopsy. 2024;3:100138.
CrossRef
Google scholar
|
[16] |
Dhar R, Devi A. Exosomes barcoding: a smart approach for cancer liquid biopsy. J Liquid Biopsy. 2023;2:100129.
CrossRef
Google scholar
|
[17] |
Madhan S, Dhar R, Devi A. Plant-derived exosomes: a green approach for cancer drug delivery. J Mater Chem B. 2024.
CrossRef
Google scholar
|
[18] |
Tagde P, Najda A, Nagpal K, et al. Nanomedicine-based delivery strategies for breast cancer treatment and management. Int J Mol Sci. 2022;23(5):2856.
CrossRef
Google scholar
|
/
〈 | 〉 |