Multiple Stable Traveling Wave Profiles of a System of Conservation Laws Arising from Chemotaxis
Jingyu Li , Zhi-An Wang
CSIAM Trans. Life Sci. ›› 2025, Vol. 1 ›› Issue (1) : 153 -178.
Multiple Stable Traveling Wave Profiles of a System of Conservation Laws Arising from Chemotaxis
In this paper, we establish the existence and nonlinear stability of a hyperbolic system of conservation laws derived from a repulsive singular chemotaxis model. By the phase plane analysis alongside Poincar´e-Bendixson theorem, we first prove that this hyperbolic system admits three different types of traveling wave profiles, which are explicitly illustrated with numerical simulations. Then using a unified weighted energy estimates and technique of taking anti-derivatives, we prove that all types of traveling wave profiles, including non-monotone pulsating wave profiles, are nonlinearly and asymptotically stable if the initial data are small perturbations with zero mass from the spatially shifted traveling wave profiles.
Chemotaxis / conservation laws / traveling waves / nonlinear stability / weighted energy estimates
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
/
| 〈 |
|
〉 |