Multiple Stable Traveling Wave Profiles of a System of Conservation Laws Arising from Chemotaxis

Jingyu Li , Zhi-An Wang

CSIAM Trans. Life Sci. ›› 2025, Vol. 1 ›› Issue (1) : 153 -178.

PDF (780KB)
CSIAM Trans. Life Sci. ›› 2025, Vol. 1 ›› Issue (1) :153 -178. DOI: 10.4208/csiam-ls.SO-2024-0005a
Research Articles
research-article

Multiple Stable Traveling Wave Profiles of a System of Conservation Laws Arising from Chemotaxis

Author information +
History +
PDF (780KB)

Abstract

In this paper, we establish the existence and nonlinear stability of a hyperbolic system of conservation laws derived from a repulsive singular chemotaxis model. By the phase plane analysis alongside Poincar´e-Bendixson theorem, we first prove that this hyperbolic system admits three different types of traveling wave profiles, which are explicitly illustrated with numerical simulations. Then using a unified weighted energy estimates and technique of taking anti-derivatives, we prove that all types of traveling wave profiles, including non-monotone pulsating wave profiles, are nonlinearly and asymptotically stable if the initial data are small perturbations with zero mass from the spatially shifted traveling wave profiles.

Keywords

Chemotaxis / conservation laws / traveling waves / nonlinear stability / weighted energy estimates

Cite this article

Download citation ▾
Jingyu Li, Zhi-An Wang. Multiple Stable Traveling Wave Profiles of a System of Conservation Laws Arising from Chemotaxis. CSIAM Trans. Life Sci., 2025, 1(1): 153-178 DOI:10.4208/csiam-ls.SO-2024-0005a

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Chae, K. Choi, K. Kang, and J. Lee, Stability of planar traveling waves in a Keller-Segel equation on an infinite strip domain, J. Differential Equations, 265(1):237-279, 2018.

[2]

K. Choi, M.-J. Kang, Y.-S. Kwon, and A. F. Vasseur, Contraction for large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model, Math. Models Methods Appl. Sci., 30(2):387-437, 2020.

[3]

K. Choi, M.-J. Kang, and A. F. Vasseur, Global well-posedness of large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model, J. Math. Pures Appl., 142:266-297, 2020.

[4]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, 2005.

[5]

P. N. Davis, P. van Heijster, and R. Marangell, Absolute instabilities of travelling wave solutions in a Keller-Segel model, Nonlinearity, 30(11):4029-4061, 2017.

[6]

C. Deng and T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differential Equations, 257(5):1311-1332, 2014.

[7]

C. R. Doering, J. Wu, K. Zhao and X. Zheng, Long time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion, Phys. D, 376-377:144-159, 2018.

[8]

Z. Du, J. Liu, and Y. Ren, Traveling pulse solutions of a generalized Keller-Segel system with small cell diffusion via a geometric approach, J. Differential Equations, 270:1019-1042, 2021.

[9]

L. C. Evans, Partial Differential Equations: Graduate Studies in Mathematics, AMS, 2010.

[10]

J. Fritz and B. T óth, Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas, Commun. Math. Phys., 249(1):1-27, 2004.

[11]

J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Ration. Mech. Anal., 95(4):325-344, 1986.

[12]

R. Granero-Belinch ón, Global solutions for a hyperbolic-parabolic system of chemotaxis, J. Math. Anal. Appl., 449(1):872-883, 2017.

[13]

R. Granero-Belinch ón, On the fractional fisher information with applications to a hyperbolicparabolic system of chemotaxis, J. Differential Equations, 262(4):3250-3283, 2017.

[14]

C. Hao, Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Z. Angew. Math. Phys., 63:825-834, 2012.

[15]

Q. Hou and Z. Wang, Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane, J. Math. Pures Appl., 130:251-287, 2019.

[16]

Q. Hou, Z.-A. Wang, and K. Zhao, Boundary layer problem on a hyperbolic system arising from chemotaxis, J. Differential Equations, 261(9):5035-5070, 2016.

[17]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30:377-380, 1971.

[18]

M. Kot, Elements of Mathematical Ecology, Cambridge University Press, 2001.

[19]

J. Li, T. Li, and Z.-A. Wang, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity, Math. Models Methods Appl. Sci., 24(14):2819-2849, 2014.

[20]

J. Li, L. Wang, and K. Zhang, Asymptotic stability of a composite wave of two traveling waves to a hyperbolic-parabolic system modeling chemotaxis, Math. Methods Appl. Sci., 36:1862-1877, 2013.

[21]

J. Li and Z. Wang, Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space, J. Differential Equations, 268(11):6940-6970, 2020.

[22]

T. Li, R. Pan, and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72(1):417-443, 2012.

[23]

T. Li and Z.-A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250(3):1310-1333, 2011.

[24]

T. Li and Z.-A. Wang, Steadily propagating waves of a chemotaxis model, Math. Biosci., 240(2):161-168, 2012.

[25]

Y. Li, Y. Li, Y. Wu, and H. Zhang, Spectral stability of bacteria pulses for a Keller-Segel chemotactic model, J. Differential Equations, 304:229-286, 2021.

[26]

T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Mem. Amer. Math. Soc., 56:1-108, 1985.

[27]

T.-P. Liu and Y. Zeng, Time-asymptotic behavior of wave propagation around a viscous shock profile, Commun. Math. Phys., 290(1):23-82, 2009.

[28]

T. Nagai and T. Ikeda, Traveling waves in a chemotactic model, J. Math. Biol., 30(2):169-184, 1991.

[29]

G. M. Odell and E. F. Keller, Traveling bands of chemotactic bacteria revisited, J. Theor. Biol., 56(1):243-247, 1976.

[30]

H. Peng, H. Wen, and C. Zhu, Global well-posedness and zero diffusion limit of classical solutions to 3D conservation laws arising in chemotaxis, Z. Angew Math. Phys., 65(6):1167-1188, 2014.

[31]

L. G. Rebholz, D. Wang, Z. Wang, C. Zerfas, and K. Zhao, Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions, Discrete Contin. Dyn. Syst., 39(7):3789-3838, 2019.

[32]

H. Schwetlick, Traveling waves for chemotaxis-systems, Proc. Appl. Math. Mech., 3(1):476-478, 2003.

[33]

D. Serre, Systems of Conservation Laws: Geometric Structure, Oscillations and Initial-boundary Value Problems, Cambridge University Press, 2000.

[34]

B. D. Sleeman and H. A. Levine, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57(3):683-730, 1997.

[35]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Spring-Verlag, 1994.

[36]

A. Szepessy and Z. Xin, Nonlinear stability of viscous shock waves, Arch. Ration. Mech. Anal., 122(1):53-103, 1993.

[37]

Y. S. Tao, L. H. Wang, and Z.-A. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst. Ser. B, 18:821- 845, 2013.

[38]

D. Wang, Z. Wang, and K. Zhao, Cauchy problem of a system of parabolic conservation laws arising from the singular Keller-Segel model in multi-dimensions, Indiana Univ. Math. J., 70(1):1-47, 2021.

[39]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, 1990.

[40]

M. Zhang and C. J. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135:1017-1027, 2006.

[41]

N. Zhu, Z. Liu, V. R. Martinez, and K. Zhao, Global Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model, SIAM J. Math. Anal., 50(5):5380-5425, 2018.

[42]

N. Zhu, Z. Liu, F. Wang, and K. Zhao, Asymptotic dynamics of a system of conservation laws from chemotaxis, Discrete Contin. Dyn. Syst., 41(2):813, 2021.

PDF (780KB)

265

Accesses

0

Citation

Detail

Sections
Recommended

/