Disease Prediction with a Maximum Entropy Method

Michael Shub , Qing Xu , Xiaohua Xuan

CSIAM Trans. Life Sci. ›› 2025, Vol. 1 ›› Issue (1) : 134 -152.

PDF (145KB)
CSIAM Trans. Life Sci. ›› 2025, Vol. 1 ›› Issue (1) :134 -152. DOI: 10.4208/csiam-ls.SO-2024-0004a
Research Articles
research-article

Disease Prediction with a Maximum Entropy Method

Author information +
History +
PDF (145KB)

Abstract

In this paper, we propose a maximum entropy method for predicting disease risks. It is based on a patient’s medical history with diseases coded in International Classification of Diseases, tenth revision, which can be used in various cases. The complete algorithm with strict mathematical derivation is given. We also present experimental results on a medical dataset, demonstrating that our method performs well in predicting future disease risks and achieves an accuracy rate twice that of the traditional method. We also perform a comorbidity analysis to reveal the intrinsic relation of diseases.

Keywords

Disease prediction / maximum entropy / bioinformatics

Cite this article

Download citation ▾
Michael Shub, Qing Xu, Xiaohua Xuan. Disease Prediction with a Maximum Entropy Method. CSIAM Trans. Life Sci., 2025, 1(1): 134-152 DOI:10.4208/csiam-ls.SO-2024-0004a

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

U. E. Bauer, P. A. Briss, R. A. Goodman, and B. A. Bowman, Prevention of chronic disease in the 21st century: Elimination of the leading preventable causes of premature death and disability in the USA, The Lancet, 384(9937):45-52, 2014.

[2]

F. S. Collins and H. Varmus, A new initiative on precision medicine, N. Engl. J. Med., 372(9):793-795, 2015.

[3]

S. D. Culler, M. L. Parchman, and M. Przybylski, Factors related to potentially preventable hospitalizations among the elderly, Med. Care, 36(6):804-817, 1998.

[4]

G. Gibson, Rare and common variants: Twenty arguments, Nat. Rev. Genet., 13(2):135-145, 2012.

[5]

S. Guiasu and A. Shenitzer, The principle of maximum entropy, Math. Intelligencer, 7:42-48, 1985.

[6]

C. A. Hidalgo, N. Blumm, A.-L. Barab ási, and N. A. Christakis, A dynamic network approach for the study of human phenotypes, PLoS Comput. Biol., 5(4):e1000353, 2009.

[7]

E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev., 106(4):620, 1957.

[8]

B. P Kitchens, Symbolic Dynamics:One-sided, Two-sided and Countable State Markov Shifts, Springer Science & Business Media, 2012.

[9]

B. Maher, Personal genomes: The case of the missing heritability, Nature, 456(7218):18-21, 2008.

[10]

T. A. Manolio et al., Finding the missing heritability of complex diseases, Nature, 461(7265):747-753, 2009.

[11]

A. A. Maurer, Ockham’s razor and Chatton’s anti-razor, Mediaev. Stud., 46(1):463-475, 1984.

[12]

C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2023.

[13]

M. Nwankwo, J. C. Okamkpa, and B. Danborno, Association between high blood pressure with risk of type 2 diabetes, metabolic syndrome and its predictors: A cross-sectional study, Diabetes Metab. Syndr.: Clin. Res. Rev., 13(2):1549-1554, 2019.

[14]

R. H. Scott, T. A. Fowler, and M. Caulfield, Genomic medicine: Time for health-care transformation, The Lancet, 394(10197):454-456, 2019.

[15]

C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27(3):379-423, 1948.

[16]

R. Snyderman and Z. Yoediono, Prospective care: A personalized, preventative approach to medicine, Pharmacogenomics, 7(1):5-9, 2006.

[17]

M. A. Tedesco, F. Natale, G. Di Salvo, S. Caputo, M. Capasso, and R. Calabr ó, Effects of coexisting hypertension and type ii diabetes mellitus on arterial stiffness, J. Hum. Hypertens., 18(7):469-473, 2004.

[18]

P. M. Visscher, M. A. Brown, M. I. McCarthy, and J. Yang, Five years of GWAS discovery, Am. J. Hum. Genet., 90(1):7-24, 2012.

PDF (145KB)

278

Accesses

0

Citation

Detail

Sections
Recommended

/