Advancements in Mathematical Approaches for Deciphering Deep Brain Stimulation: A Systematic Review

Luan Yang , Jingdong Zhang , Shijie Zhou , Wei Lin

CSIAM Trans. Life Sci. ›› 2025, Vol. 1 ›› Issue (1) : 93 -133.

PDF (505KB)
CSIAM Trans. Life Sci. ›› 2025, Vol. 1 ›› Issue (1) :93 -133. DOI: 10.4208/csiam-ls.SO-2024-0004
Review Articles
research-article

Advancements in Mathematical Approaches for Deciphering Deep Brain Stimulation: A Systematic Review

Author information +
History +
PDF (505KB)

Abstract

Deep brain stimulation (DBS) is a prominent therapy for neurodegenerative disorders, particularly advanced Parkinson’s disease (PD), offering relief from motor symptoms and lessening dependence on dopaminergic drugs. Yet, theoretically comprehending either DBS mechanisms or PD neurophysiology remains elusive, highlighting the importance of neuron modeling and control theory. Neurological disorders ensues from abnormal synchrony in neural activity, as evidenced by abnormal oscillations in the local field potential (LFP). Complex systems are typically characterized as high-dimensional, necessitating the application of dimensional reduction techniques pinpoint pivotal network tipping points, allowing mathematical models delve into DBS effectiveness in countering synchrony within neuronal ensembles. Although the traditional closed-loop control policies perform well in DBS technique research, computational and energy challenges in controlling large amounts of neurons prompt investigation into event-triggered strategies, subsequently machine learning emerges for navigating intricate neuronal dynamics. We comprehensively review mathematical foundations, dimension reduction approaches, control theory and machine learning methods in DBS, for thoroughly understanding the mechanisms of brain disease and proposing potential applications in the interdisciplinary field of clinical treatment, control, and artificial intelligence.

Keywords

Deep brain stimulation / neuronal network / dimension reduction / control theory / machine learning

Cite this article

Download citation ▾
Luan Yang, Jingdong Zhang, Shijie Zhou, Wei Lin. Advancements in Mathematical Approaches for Deciphering Deep Brain Stimulation: A Systematic Review. CSIAM Trans. Life Sci., 2025, 1(1): 93-133 DOI:10.4208/csiam-ls.SO-2024-0004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Amos, L. Xu, and J. Z. Kolter, Input convex neural networks, in: International Conference on Machine Learning, PMLR, 146-155, 2017.

[2]

V. I. Arnold, Ordinary Differential Equations, Springer Science & Business Media, 1992.

[3]

P. Ashwin, S. Coombes, and R. Nicks, Mathematical frameworks for oscillatory network dynamics in neuroscience, J. Math. Neurosci., 6:1-92, 2016.

[4]

A. L. Benabid, S. Chabardes, J. Mitrofanis, and P. Pollak, Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease, Lancet Neurol., 8(1):67-81, 2009.

[5]

A. Ber´enyi, M. Belluscio, D. Mao, and G. Buzsáki, Closed-loop control of epilepsy by transcranial electrical stimulation, Science, 337(6095):735-737, 2012.

[6]

C. Bick, M. Goodfellow, C. R. Laing, and E. A. Martens, Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review, J. Math. Neurosci., 10(1):9, 2020.

[7]

E. Brown, J. Moehlis, and P. Holmes, On the phase reduction and response dynamics of neural oscillator populations, Neural Comput., 16(4):673-715, 2004.

[8]

J. Buhlmann, L. Hofmann, P. A. Tass, and C. Hauptmann, Modeling of a segmented electrode for desynchronizing deep brain stimulation, Front. Neuroeng., 4:15, 2011.

[9]

E. Bullmore and O. Sporns, Complex brain networks: Graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci., 10(3):186-198, 2009.

[10]

H. Cagnan et al., Stimulating at the right time: Phase-specific deep brain stimulation, Brain, 140(1):132-145, 2017.

[11]

Y.-C. Chang, N. Roohi, and S. Gao, Neural Lyapunov control, in: Proceedings of the 33rd International Conference on Neural Information Processing Systems, Curran Associates Inc., 3245-3254, 2019.

[12]

K. Chauhan, A. B. Neiman, and P. A. Tass, Synaptic reorganization of synchronized neuronal networks with synaptic weight and structural plasticity, PLoS Comput. Biol., 20(7):e1012261, 2024.

[13]

Y. Che, T. Yang, R. Li, H. Li, C. Han, J. Wang, and X Wei, Desynchronization in an ensemble of globally coupled chaotic bursting neuronal oscillators by dynamic delayed feedback control, Int. J. Mod. Phys. B, 29(01):1450235, 2015.

[14]

K.-H. S. Chen and R. Chen, Invasive and noninvasive brain stimulation in Parkinson’s disease: Clinical effects and future perspectives, Clin. Pharmacol. Ther., 106(4):763-775, 2019.

[15]

L. Chen, L. Xu, and C. Li, Bursting, beating, and chaos in an excitable membrane model, Acta Phys. Sin., 65(24):240701, 2016.

[16]

T. Chen and H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems, IEEE Trans. Neural Netw., 6(4):911-917, 1995.

[17]

C. Dawson, S. Gao, and C. Fan, Safe control with learned certificates: A survey of neural Lyapunov, barrier, and contraction methods for robotics and control, IEEE Trans. Robot., 39(3):1749-1767, 2023.

[18]

C. de Hemptinne, E. S. Ryapolova-Webb, E. L. Air, P. A. Garcia, K. J. Miller, J. G. Ojemann, J. L. Ostrem, N. B. Galifianakis, and P. A. Starr, Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease, Proc. Natl. Acad. Sci. USA, 110(12):4780-4785, 2013.

[19]

C. de Hemptinne, N. C. Swann, J. L. Ostrem, E. S. Ryapolova-Webb, M. S. Luciano, N. B. Galifianakis, and P. A. Starr, Therapeutic deep brain stimulation reduces cortical phaseamplitude coupling in Parkinson’s disease, Nat. Neurosci., 18(5):779-786, 2015.

[20]

M. R. DeLong and T. Wichmann, Basal ganglia circuits as targets for neuromodulation in Parkinson disease, JAMA Neurol., 72(11):1354-1360, 2015.

[21]

J.-M. Deniau, B. Degos, C. Bosch, and N. Maurice, Deep brain stimulation mechanisms: Beyond the concept of local functional inhibition, Eur. J. Neurosci., 32(7):1080-1091, 2010.

[22]

G. Drion, T. O’Leary, and E. Marder, Ion channel degeneracy enables robust and tunable neuronal firing rates, Proc. Natl. Acad. Sci. USA, 112(38):E5361-E5370, 2015.

[23]

B. Ermentrout, Type i membranes, phase resetting curves, and synchrony, Neural Computation, 8(5):979-1001, 1996.

[24]

B. Ermentrout and A. Mahajan, Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students, Appl. Mech. Rev., 56(4):B53-B53, 2003.

[25]

B. Ermentrout, M. Pascal, and B. Gutkin, The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators, Neural Comput., 13(6):1285-1310, 2001.

[26]

D. Fan, Z. Wang, and Q. Wang, Optimal control of directional deep brain stimulation in the parkinsonian neuronal network, Commun. Nonlinear Sci. Numer. Simul., 36:219-237, 2016.

[27]

Z. Feng, Y. Sun, L. Qian, Y. Qi, Y. Wang, C. Guan, and Y. Sun, Design a novel BCI for neurorehabilitation using concurrent LFP and EEG features: A case study, IEEE. Trans. Biomed. Eng., 69(5):1554-1563, 2022.

[28]

R. FitzHugh, Thresholds and plateaus in the Hodgkin-Huxley nerve equations, J. Gen. Physiol., 43(5):867-896, 1960.

[29]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1(6):445-466, 1961.

[30]

J. E. Fleming, J. Orłowski, M. M. Lowery, and A. Chaillet, Self-tuning deep brain stimulation controller for suppression of beta oscillations: Analytical derivation and numerical validation, Front. Neurosci., 14:547800, 2020.

[31]

J. Gao, B. Barzel, and A.-L. Barab ási, Universal resilience patterns in complex networks, Nature, 530(7590):307-312, 2016.

[32]

Q. Gao, M. Naumann, I. Jovanov, V. Lesi, K. Kamaravelu, W. M. Grill, and M. Pajic, Modelbased design of closed loop deep brain stimulation controller using reinforcement learning, in: 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS), IEEE, 108-118, 2020.

[33]

J. Garcia-Ojalvo, M. B. Elowitz, and S. H. Strogatz, Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing, Proc. Natl. Acad. Sci. USA, 101(30):10955-10960, 2004.

[34]

L. Glass and M. C. Mackey, From Clocks to Chaos:The Rhythms of Life, Princeton University Press, 1988.

[35]

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, Optical deconstruction of parkinsonian neural circuitry, Science, 324(5925):354-359, 2009.

[36]

A. Guerra, V. L ópez-Alonso, B. Cheeran, and A. Suppa, Variability in non-invasive brain stimulation studies: Reasons and results, Neurosci. Lett., 719:133330, 2020.

[37]

B. S. Gutkin, G. B. Ermentrout, and A. D. Reyes, Phase-response curves give the responses of neurons to transient inputs, J. Neurophysiol., 94(2):1623-1635, 2005.

[38]

A. Haddock, A. Velisar, J. Herron, H. Bronte-Stewart, and H. J. Chizeck, Model predictive control of deep brain stimulation for parkinsonian tremor, in: 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), IEEE, 358-362, 2017.

[39]

I. Haidar, W. Pasillas-L´epine, A. Chaillet, E. Panteley, S. Palfi, and S. Senova, Closed-loop firing rate regulation of two interacting excitatory and inhibitory neural populations of the basal ganglia, Biol. Cybern., 110:55-71, 2016.

[40]

K. D. Harris, Neural signatures of cell assembly organization, Nat. Rev. Neurosci., 6(5):399-407, 2005.

[41]

S. Haufe, S. D¨ahne, and V. V. Nikulin, Dimensionality reduction for the analysis of brain oscillations, NeuroImage, 101:583-597, 2014.

[42]

Y. Hayashi, T. Mishima, S. Fujioka, T. Morishita, T. Inoue, S. Nagamachi, and Y. Tsuboi, Unilateral GPi-DBS improves ipsilateral and axial motor symptoms in Parkinson’s disease as evidenced by a brain perfusion single photon emission computed tomography study, Front. Hum. Neurosci., 16:888701, 2022.

[43]

S. He et al., Beta-triggered adaptive deep brain stimulation during reaching movement in Parkinson’s disease, Brain, 146(12):5015-5030, 2023.

[44]

D. O. Hebb, The Organization of Behavior:A Neuropsychological Theory, Psychology Press, 2005.

[45]

W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, An introduction to event-triggered and self-triggered control, in: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), IEEE, 3270-3285, 2012.

[46]

J. L. Hindmarsh and R. M. Rose, A model of the nerve impulse using two first-order differential equations, Nature, 296(5853):162-164, 1982.

[47]

A. L. Hodgkin, The local electric changes associated with repetitive action in a non-medullated axon, J. Physiol 107(2):165-181, 1948.

[48]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117(4):500, 1952.

[49]

E. M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press, 2007.

[50]

J. Jiang, Z.-G. Huang, T. P. Seager, W. Lin, C. Grebogi, A. Hastings, and Y.-C. Lai, Predicting tipping points in mutualistic networks through dimension reduction, Proc. Natl. Acad. Sci. USA, 115(4):E639-E647, 2018.

[51]

M. D. Johnson, S. Miocinovic, C. C. McIntyre, and J. L. Vitek, Mechanisms and targets of deep brain stimulation in movement disorders, Neurotherapeutics, 5(2):294-308, 2008.

[52]

D. Kaplan and L. Glass, Understanding Nonlinear Dynamics, Springer Science & Business Media, 2012.

[53]

M. Kardar, Statistical Physics of Particles, Cambridge University Press, 2007.

[54]

H. K. Khalil, Nonlinear Systems, Prentice Hall, 2002.

[55]

B. Kralemann, M. Fr ¨uhwirth, A. Pikovsky, M. Rosenblum, T. Kenner, J. Schaefer, and M. Moser, In vivo cardiac phase response curve elucidates human respiratory heart rate variability, Nat. Commun., 4(1):2418, 2013.

[56]

D. Krylov, D. V. Dylov, and M. Rosenblum, Reinforcement learning for suppression of collective activity in oscillatory ensembles, Chaos, 30(3):033126, 2020.

[57]

S. Kumar, H. Alawieh, F. S. Racz, R. Fakhreddine, and J. del R. Millán, Transfer learning promotes acquisition of individual BCI skills, PNAS Nexus, 3(2):76, 2024.

[58]

E. Laurence, N. Doyon, L. J. Dub´e, and P. Desrosiers, Spectral dimension reduction of complex dynamical networks, Phys. Rev. X, 9(1):011042, 2019.

[59]

H. S. Lee, B. J. Kim, and H. J. Park, Stability of twisted states in power-law-coupled Kuramoto oscillators on a circle with and without time delay, Phys. Rev. E, 109(6):064203, 2024.

[60]

F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control, John Wiley & Sons, 2012.

[61]

Z. Liang, Z. Luo, K. Liu, J. Qiu, and Q. Liu, Online learning Koopman operator for closed-loop electrical neurostimulation in epilepsy, IEEE J. Biomed. Health Inform., 27(1):492-503, 2022.

[62]

S. Little and P. Brown, Debugging adaptive deep brain stimulation for Parkinson’s disease, Mov. Disord., 35(4):555-561, 2020.

[63]

S. Little et al., Adaptive deep brain stimulation in advanced Parkinson disease, Ann. Neurol., 74(3):449-457, 2013.

[64]

S. Little et al., Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease, J. Neurol. Neurosurg. Psychiatry, 87(7):717-721, 2016.

[65]

C. Liu, G. Zhao, J. Wang, H. Wu, H. Li, C. Fietkiewicz, and K. A. Loparo, Neural network-based closed-loop deep brain stimulation for modulation of pathological oscillation in Parkinson’s disease, IEEE Access, 8:161067-161079, 2020.

[66]

T. B. Luke, E. Barreto, and P. So, Macroscopic complexity from an autonomous network of networks of theta neurons, Front. Comput. Neurosci., 8:145, 2014.

[67]

X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2007.

[68]

A. C. Meidahl, G. Tinkhauser, D. M. Herz, H. Cagnan, J. Debarros, and P. Brown, Adaptive deep brain stimulation for movement disorders: The long road to clinical therapy, Mov. Disord., 32(6):810-819, 2017.

[69]

T. Merk, V. Peterson, R. K öhler, S. Haufe, R. M. Richardson, and W.-J. Neumann, Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation, Exp. Neurol., 351:113993, 2022.

[70]

D. Meunier, R. Lambiotte, and E. T. Bullmore, Modular and hierarchically modular organization of brain networks, Front. Neurosci., 4:7572, 2010.

[71]

C. Meunier and I. Segev, Playing the devil’s advocate: Is the Hodgkin-Huxley model useful? Trends Neurosci., 25(11):558-563, 2002.

[72]

B. Monga, D. Wilson, T. Matchen, and J. Moehlis, Phase reduction and phase-based optimal control for biological systems: A tutorial, Biol. Cybern., 113(1):11-46, 2019.

[73]

G. Montaseri, M. J. Yazdanpanah, A. Pikovsky, and M. Rosenblum, Synchrony suppression in ensembles of coupled oscillators via adaptive vanishing feedback, Chaos, 23(3):033122, 2013.

[74]

C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J., 35(1):193-213, 1981.

[75]

S. F. Muldoon, F. Pasqualetti, S. Gu, M. Cieslak, S. T. Grafton, J. M. Vettel, and D. S. Bassett, Stimulation-based control of dynamic brain networks, PLoS Comput. Biol., 12(9):e1005076, 2016.

[76]

J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50(10):2061- 2070, 1962.

[77]

T. Netoff, M. A. Schwemmer, and T. J. Lewis, Experimentally estimating phase response curves of neurons: Theoretical and practical issues,in:Phase Response Curves in Neuroscience. Springer Series in Computational Neuroscience, Vol. 6, Springer, 95-129, 2012.

[78]

A. J. Nevado Holgado, J. R. Terry, and R. Bogacz, Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network, J. Neurosci., 30(37):12340-12352, 2010.

[79]

M. A. Nowak, Five rules for the evolution of cooperation, Science, 314(5805):1560-1563, 2006.

[80]

E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18(3):037113, 2008.

[81]

P. A. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, PhD Thesis, California Institute of Technology, 2000.

[82]

W. Pasillas-L´epine, I. Haidar, A. Chaillet, and E. Panteley, Closed-loop deep brain stimulation based on firing-rate regulation, in: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), IEEE, 166-169, 2013.

[83]

M. Peralta, P. Jannin, and J. S. H. Baxter, Machine learning in deep brain stimulation: A systematic review, Artif. Intell. Med., 122:102198, 2021.

[84]

D. Pi ña-Fuentes, J. M. C. van Dijk, J. C. van Zijl, H. R. Moes, T. van Laar, D. L. M. Oterdoom, S. Little, P. Brown, and M. Beudel, Acute effects of adaptive deep brain stimulation in Parkinson’s disease, Brain Stimul., 13(6):1507-1516, 2020.

[85]

O. V. Popovych, C. Hauptmann, and P. A. Tass, Effective desynchronization by nonlinear delayed feedback, Phys. Rev. Lett., 94(16):164102, 2005.

[86]

O. V. Popovych, C. Hauptmann, and P. A. Tass, Control of neuronal synchrony by nonlinear delayed feedback, Biol. Cybern., 95(1):69-85, 2006.

[87]

O. V. Popovych and P. A. Tass, Synchronization control of interacting oscillatory ensembles by mixed nonlinear delayed feedback, Phys. Rev. E, 82(2):026204, 2010.

[88]

K. Pyragas, O.V. Popovych, and P. A. Tass, Controlling synchrony in oscillatory networks with a separate stimulation-registration setup, EPL, 80(4):40002, 2007.

[89]

Y. Qin, D. S. Bassett, and F. Pasqualetti, Vibrational control of cluster synchronization: Connections with deep brain stimulation, in: 2022 IEEE 61st Conference on Decision and Control (CDC), IEEE, 655-661, 2022.

[90]

I. Ratas and K. Pyragas, Effect of high-frequency stimulation on nerve pulse propagation in the FitzHugh-Nagumo model, Nonlinear Dyn., 67:2899-2908, 2012.

[91]

I. Ratas and K. Pyragas, Controlling synchrony in oscillatory networks via an act-and-wait algorithm, Phys. Rev. E, 90(3):032914, 2014.

[92]

I. Ratas and K. Pyragas, Eliminating synchronization in bistable networks, Nonlinear Dyn., 83:1137-1151, 2016.

[93]

M. Rehan and K.-S. Hong, Modeling and automatic feedback control of tremor: Adaptive estimation of deep brain stimulation, PLoS One, 8(4):e62888, 2013.

[94]

A. R´enyi, Probability Theory, Courier Corporation, 2007.

[95]

S. Revzen and J. M. Guckenheimer, Estimating the phase of synchronized oscillators, Phys. Rev. E, 78(5):051907, 2008.

[96]

M. G. Rizzone et al., Long-term outcome of subthalamic nucleus DBS in Parkinson’s disease: From the advanced phase towards the late stage of the disease? Parkinsonism Relat. Disord., 20(4):376-381, 2014.

[97]

M. C. Rodriguez-Oroz et al., Bilateral deep brain stimulation in Parkinson’s disease: A multicentre study with 4 years follow-up, Brain, 128(10):2240-2249, 2005.

[98]

R. M. Rose and J. L. Hindmarsh, Bursting, beating, and chaos in an excitable membrane model, Biophys. J., 47(3):357-366, 1985.

[99]

R. M. Rose and J. L. Hindmarsh, The assembly of ionic currents in a thalamic neuron. I. The three-dimensional model, Proc. Royal Soc. B., 237(1288):267-288, 1989.

[100]

M. Rosenblum and A. Pikovsky, Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms, Phys. Rev. E, 70(4):041904, 2004.

[101]

B. Rosin, M. Slovik, R. Mitelman, M. Rivlin-Etzion, S. N. Haber, Z. Israel, E. Vaadia, and H. Bergman, Closed-loop deep brain stimulation is superior in ameliorating parkinsonism, Neuron, 72(2):370-384, 2011.

[102]

J. E. Rubin and D. Terman, High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model, J. Comput. Neurosci., 16:211-235, 2004.

[103]

L. Rui, H. Nejati, and N.-M. Cheung, Dimensionality reduction of brain imaging data using graph signal processing, in: IEEE International Conference on Image Processing (ICIP), IEEE, 1329-1333, 2016.

[104]

S. Russell, Human Compatible: AI and the Problem of Control, Penguin, 2019.

[105]

L. Salfenmoser and K. Obermayer, Optimal control of a Wilson-Cowan model of neural population dynamics, Chaos, 33(4):043135, 2023.

[106]

A. A. Sarma, B. Crocker, S. S. Cash, and W. Truccolo, A modular, closed-loop platform for intracranial stimulation in people with neurological disorders, in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 3139-3142, 2016.

[107]

S. S. Sastry and A. Isidori, Adaptive control of linearizable systems, IEEE Trans. Automat. Contr., 34(11):1123-1131, 1989.

[108]

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy optimization algorithms, ArXiv:1707.06347, 2017.

[109]

R. Schulz, C. Gerloff, and F. C. Hummel, Non-invasive brain stimulation in neurological diseases, Neuropharmacology, 64:579-587, 2013.

[110]

J. T. C. Schwabedal and H. Kantz, Optimal extraction of collective oscillations from unreliable measurements, Phys. Rev. Lett., 116(10):104101, 2016.

[111]

A. A. Selivanov, J. Lehnert, T. Dahms, P. H övel, A. L. Fradkov, and E. Sch öll, Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators, Phys. Rev. E, 85(1):016201, 2012.

[112]

C. Sherrington, The integrative action of the nervous system, J. Nerv. Ment. Dis., 34(12):801-802, 1907.

[113]

R. B. Stein, A theoretical analysis of neuronal variability, Biophys. J., 5(2):173-194, 1965.

[114]

R. B. Stein and A. L. Hodgkin, The frequency of nerve action potentials generated by applied currents, Proc. Royal Soc. B, 167(1006):64-86, 1967.

[115]

E. M. Stein and R. Shakarchi, Complex Analysis, Vol. II, Princeton University Press, 2010.

[116]

K. M. Stiefel, B. S. Gutkin, and T. J. Sejnowski, Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons, PLoS One, 3(12):e3947, 2008.

[117]

B. M. ’t Hart et al., Neuromatch academy: A 3-week, online summer school in computational neuroscience, J. Open Source Educ., 5(49):118, 2022.

[118]

A. Tamaˇseviˇcius, E. Tamaˇseviˇci ¯ut˙e, and G. Mykolaitis, Feedback controller for destroying synchrony in an array of the FitzHugh-Nagumo oscillators, Appl. Phys. Lett., 101(22), 2012.

[119]

D. Terman, J. E. Rubin, A. C. Yew, and C. J. Wilson, Activity patterns in a model for the subthalamopallidal network of the basal ganglia, J. Neurosci., 22(7):2963-2976, 2002.

[120]

W. J. Terrell, Stability and Stabilization:An Introduction, Princeton University Press, 2009.

[121]

V. Thibeault, G. St-Onge, L. J. Dub´e, and P. Desrosiers, Threefold way to the dimension reduction of dynamics on networks: An application to synchronization, Phys. Rev. Res., 2(4):043215, 2020.

[122]

G. Tinkhauser, A. Pogosyan, S. Little, M. Beudel, D. M. Herz, H. Tan, and P. Brown, The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease, Brain, 140(4):1053-1067, 2017.

[123]

P. J. Uhlhaas and W. Singer, Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology, Neuron, 52(1):155-168, 2006.

[124]

K. R. Wan, T. Maszczyk, A. A. Q. See, J. Dauwels, and N. K. K. King, A review on microelectrode recording selection of features for machine learning in deep brain stimulation surgery for Parkinson’s disease, Clin. Neurophysiol., 130(1):145-154, 2019.

[125]

K. Wang, L. Yang, S. Zhou, and W. Lin, Desynchronizing oscillators coupled in multi-cluster networks through adaptively controlling partial networks, Chaos, 33(9):091101, 2023.

[126]

G. Weerasinghe, B. Duchet, H. Cagnan, P. Brown, C. Bick, and R. Bogacz, Predicting the effects of deep brain stimulation using a reduced coupled oscillator model, PLoS Comput. Biol., 15(8):e1006575, 2019.

[127]

A. T. Winfree, The Geometry of Biological Time, Springer-Verlag, 1980.

[128]

T. Xie, J. Vigil, E. MacCracken, A. Gasparaitis, J. Young, W. Kang, J. Bernard, P. Warnke, and U. J. Kang, Low-frequency stimulation of STN-DBS reduces aspiration and freezing of gait in patients with PD, Neurology, 84(4):415-420, 2015.

[129]

Y. Yang, S. Qiao, O. G. Sani, J. I. Sedillo, B. Ferrentino, B. Pesaran, and M. M. Shanechi, Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation, Nat. Biomed. Eng., 5(4):324-345, 2021.

[130]

Y. Zang, S. Hong, and E. De Schutter, Firing rate-dependent phase responses of purkinje cells support transient oscillations, Elife, 9:e60692, 2020.

[131]

J. Zhang, Q. Zhu, and W. Lin, Neural stochastic control, Adv. Neural Inf. Process. Syst., 35:9098-9110, 2022.

[132]

S. Zhou, P. Ji, Q. Zhou, J. Feng, J. Kurths, and W. Lin, Adaptive elimination of synchronization in coupled oscillator, New J. Phys., 19(8):083004, 2017.

[133]

S. Zhou, Y.-C. Lai, and W. Lin, Stochastically adaptive control and synchronization: From globally one-sided Lipschitzian to only locally Lipschitzian systems, SIAM J. Appl. Dyn. Syst., 21(2):932-959, 2022.

[134]

S. Zhou and W. Lin, Eliminating synchronization of coupled neurons adaptively by using feedback coupling with heterogeneous delays, Chaos, 31(2):023114, 2021.

[135]

C. Zhou, L. Zemanov á, G. Zamora, C. C. Hilgetag, and J. Kurths, Hierarchical organization unveiled by functional connectivity in complex brain networks, Phys. Rev. Lett., 97(23):238103, 2006.

PDF (505KB)

254

Accesses

0

Citation

Detail

Sections
Recommended

/