Modelling the Effect of Human Heterogeneity on Infectious Disease Transmission Dynamics

Pengfei Song , Jianhong Wu , Yanni Xiao

CSIAM Trans. Life Sci. ›› 2025, Vol. 1 ›› Issue (1) : 1 -21.

PDF (233KB)
CSIAM Trans. Life Sci. ›› 2025, Vol. 1 ›› Issue (1) :1 -21. DOI: 10.4208/csiam-ls.SO-2024-0001
Research Articles
research-article

Modelling the Effect of Human Heterogeneity on Infectious Disease Transmission Dynamics

Author information +
History +
PDF (233KB)

Abstract

Human heterogeneity is a critical issue in infectious disease transmission dynamics modelling, and it has recently received much attention in COVID-19 studies. In this article, a general human heterogeneous disease model with mutation is proposed to comprehensively study the effects of human heterogeneity on basic reproduction number, final epidemic size and herd immunity. We show that human heterogeneity may increase or decrease herd immunity level, strongly depending on some convexity of the heterogeneity function, which gives new insights and extends the results in [Britton et al., Science, 369:846-849, 2020]. Moreover, human heterogeneity may decrease the basic reproduction number but increase the level of herd immunity, implying the unreliability of the basic reproduction number in characterizing the spread and control of infectious diseases with human heterogeneity.

Keywords

SEIR model / human heterogeneity / basic reproduction number / herd immunity level / final epidemic size

Cite this article

Download citation ▾
Pengfei Song, Jianhong Wu, Yanni Xiao. Modelling the Effect of Human Heterogeneity on Infectious Disease Transmission Dynamics. CSIAM Trans. Life Sci., 2025, 1(1): 1-21 DOI:10.4208/csiam-ls.SO-2024-0001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. M. Anderson and R. M. May, Infectious Diseases of Humans:Dynamics and Control, Oxford University Press, 1991.

[2]

C. Aschwanden, Five reasons why COVID herd immunity is probably impossible, Nature, 591: 520-522, 2021.

[3]

J. A. Backer, D. Klinkenberg, and J. Wallinga, Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020, Euro Surveill., 25:2000062, 2020.

[4]

F. Bai, Effect of population heterogeneity on herd immunity and on vaccination decision making process, J. Theor. Biol., 526:110795, 2021.

[5]

H. Berestycki, B. Desjardins, J. S. Weitz, and J.-M. Oury, Epidemic modeling with heterogeneity and social diffusion, J. Math. Biol., 86:60, 2023.

[6]

R. D. Boylan, A note on epidemics in heterogeneous populations, Math. Biosci., 105:133-137, 1991.

[7]

T. Britton, F. Ball, and P. Trapman, A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2, Science, 369:846-849, 2020.

[8]

C. Castillo-Chavez, W. Huang, and J. Li, The effects of females’ susceptibility on the coexistence of multiple pathogen strains of sexually transmitted diseases, J. Math. Biol., 35:503-522, 1997.

[9]

J. Cui, Y. Zhang, and Z. Feng, Influence of non-homogeneous mixing on final epidemic size in a meta-population model, J. Biol. Dyn., 13:31-46, 2019.

[10]

G. Degla, An overview of semi-continuity results on the spectral radius and positivity, J. Math. Anal. Appl., 338:101-110, 2008.

[11]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases, John Wiley and Sons, 2000.

[12]

O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28:365-382, 1990.

[13]

J. G. Dushoff, Modeling the Effects of Host Heterogeneity on the Spread of Human Diseases, PhD Thesis, Princeton University, 1997.

[14]

J. Dushoff, Host heterogeneity and disease endemicity: A moment-based approach, Theor. Popul. Biol., 56:325-335, 1999.

[15]

J. Dushoff and S. Levin, The effects of population heterogeneity on disease invasion, Math. Biosci., 128:25-40, 1995.

[16]

D. M. Ediev, Population heterogeneity is a critical factor of the kinetics of the COVID-19 epidemics, medRxiv 2020.06.25.20140442, 2020.

[17]

M. El Khalifi and T. Britton, SIRS epidemics with individual heterogeneity of immunity waning, J. Theor. Biol., 587:111815, 2024.

[18]

D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, in: Classics in Mathematics, Vol. 224, Springer, 1977.

[19]

M. G. M. Gomes et al., Individual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity threshold, J. Theor. Biol., 540:111063, 2022.

[20]

G. Großmann, M. Backenk öhler, and V. Wolf, Why ODE models for COVID-19 fail: Heterogeneity shapes epidemic dynamics, medRxiv 2021.03.25.21254292, 2021.

[21]

J. K. Hale, J. Math. Dynamical systems and stability, Anal. Appl., 26:39-59, 1969.

[22]

W. He, G. Y. Yi, and Y. Zhu, Estimation of the basic reproduction number, average incubation time, asymptomatic infection rate, and case fatality rate for COVID-19: Meta-analysis and sensitivity analysis, J. Med. Virol., 92(11):2543-255, 2020.

[23]

R. I. Hickson and M. G. Roberts, How population heterogeneity in susceptibility and infectivity influences epidemic dynamics, J. Theor. Biol., 350:70-80, 2014.

[24]

J. A. Jacquez, C. P. Simon, J. Koopman, L. Sattenspiel, and T. Perry, Modeling and analyzing HIV transmission: The effect of contact patterns, Math. Biosci., 92:119-199, 1988.

[25]

G. Katriel, The size of epidemics in populations with heterogeneous susceptibility, J. Math. Biol., 65:237-262, 2012.

[26]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl., 10:3-95, 1962.

[27]

X. Liang, L. Zhang, and X.-Q. Zhao, Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for lyme disease), J. Dynam. Differential Equations, 31:1247-1278, 2019.

[28]

S. Merler and M. Ajelli, The role of population heterogeneity and human mobility in the spread of pandemic influenza, Proc. R. Soc. B, 277:557-565, 2010.

[29]

C. J. Mode, C. K. Sleeman, Stochastic Processes in Epidemiology: HIV/AIDS, Other Infectious Diseases and Computers, World Scientific, 2000.

[30]

Y. Oz, I. Rubinstein, and M. Safra, J. Stat. Heterogeneity and superspreading effect on herd immunity, Mech. Theory Exp., 2021:033405, 2021.

[31]

C. L. Shaw and D. A. Kennedy, What the reproductive number R 0 can and cannot tell us about COVID-19 dynamics, Theor. Popul. Biol., 137:2-9, 2021.

[32]

Y. Shu and J. McCauley, GISAID: Global initiative on sharing all influenza data - from vision to reality, Euro Surveill., 22:30494, 2017.

[33]

P. Song, Y. Lou, and Y. Xiao, A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differential Equations, 267:5084-5114, 2019.

[34]

Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine Association, An update on the epidemiological characteristics of novel coronavirus pneumonia (COVID-19), Chinese Journal of Epidemiology, 41:139-144, 2020.

[35]

J. M. Steele, The Cauchy-Schwarz Master Class:An Introduction to the Art of Mathematical Inequalities, Cambridge University Press, 2004.

[36]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70:188-211, 2009.

[37]

A. V. Tkachenko, S. Maslov, A. Elbanna, G. N. Wong, Z. J. Weiner, and N. Goldenfeld, Timedependent heterogeneity leads to transient suppression of the COVID-19 epidemic, not herd immunity, Proc. Natl. Acad. Sci. USA, 118:e2015972118, 2021.

[38]

W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11:1652-1673, 2012.

[39]

Y. Xie, Population heterogeneity and causal inference, Proc. Natl. Acad. Sci. USA, 110:6262-6268, 2013.

[40]

Z. Yang et al., Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions, J. J. Thorac. Dis., 12(3):165-174, 2020.

[41]

J. Zhang et al., Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China, Science, 368:1481-1486, 2020.

[42]

X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, 2017.

PDF (233KB)

247

Accesses

0

Citation

Detail

Sections
Recommended

/