Convergent Finite Elements on Arbitrary Meshes, the WG Method

Ran Zhang , Shangyou Zhang

CSIAM Trans. Appl. Math. ›› 2025, Vol. 6 ›› Issue (4) : 651 -665.

PDF (200KB)
CSIAM Trans. Appl. Math. ›› 2025, Vol. 6 ›› Issue (4) : 651 -665. DOI: 10.4208/csiam-am.SO-2024-0038
research-article

Convergent Finite Elements on Arbitrary Meshes, the WG Method

Author information +
History +
PDF (200KB)

Abstract

On meshes with the maximum angle condition violated, the standard conforming, nonconforming, and discontinuous Galerkin finite elements do not converge to the true solution when the mesh size goes to zero. It is shown that one type of weak Galerkin finite element method converges on triangular and tetrahedral meshes violating the maximum angle condition, i.e. on arbitrary meshes. Numerical tests confirm the theory.

Keywords

Discontinuous finite element / maximum angle condition / Poisson's equation / triangular grid / tetrahedral grid

Cite this article

Download citation ▾
Ran Zhang, Shangyou Zhang. Convergent Finite Elements on Arbitrary Meshes, the WG Method. CSIAM Trans. Appl. Math., 2025, 6(4): 651-665 DOI:10.4208/csiam-am.SO-2024-0038

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF (200KB)

278

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/