A Novel up to Fourth-Order Equilibria-Preserving and Energy-Stable Exponential Runge-Kutta Framework for Gradient Flows

Haifeng Wang , Jingwei Sun , Hong Zhang , Xu Qian

CSIAM Trans. Appl. Math. ›› 2025, Vol. 6 ›› Issue (1) : 106 -147.

PDF (634KB)
CSIAM Trans. Appl. Math. ›› 2025, Vol. 6 ›› Issue (1) : 106 -147. DOI: 10.4208/csiam-am.SO-2024-0032
research-article

A Novel up to Fourth-Order Equilibria-Preserving and Energy-Stable Exponential Runge-Kutta Framework for Gradient Flows

Author information +
History +
PDF (634KB)

Abstract

In this work, we develop and analyze a family of up to fourth-order, unconditionally energy-stable, single-step schemes for solving gradient flows with global Lipschitz continuity. To address the exponential damping/growth behavior observed in Lawson's integrating factor Runge-Kutta approach, we propose a novel strategy to maintain the original system's steady state, leading to the construction of an exponential Runge-Kutta (ERK) framework. By integrating the linear stabilization technique, we provide a unified framework for examining the energy stability of the ERK method. Moreover, we show that certain specific ERK schemes achieve unconditional energy stability when a sufficiently large stabilization parameter is utilized. As a case study, using the no-slope-selection thin film growth equation, we conduct an optimal rate convergence analysis and error estimate for a particular three-stage, third-order ERK scheme coupled with Fourier pseudo-spectral discretization. This is accomplished through rigorous eigenvalue estimation and nonlinear analysis. Numerical experiments are presented to confirm the high-order accuracy and energy stability of the proposed schemes.

Keywords

Gradient flows / exponential Runge-Kutta method / unconditional energy stability / error estimate

Cite this article

Download citation ▾
Haifeng Wang, Jingwei Sun, Hong Zhang, Xu Qian. A Novel up to Fourth-Order Equilibria-Preserving and Energy-Stable Exponential Runge-Kutta Framework for Gradient Flows. CSIAM Trans. Appl. Math., 2025, 6(1): 106-147 DOI:10.4208/csiam-am.SO-2024-0032

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Cao, H. Yang, and W. Chen, An exponential time differencing Runge-Kutta method ETDRK 32 for phase field models, J. Sci. Comput., 99:6, 2024.

[2]

W. Chen, S. Conde, C. Wang, X. Wang, and S. M. Wise, A linear energy stable scheme for a thin film model without slope selection, J. Sci. Comput., 52:546-562, 2012.

[3]

W. Chen, X. Wang, Y. Yan, and Z. Zhang, A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation, SIAM J. Numer. Anal., 57:495-525, 2019.

[4]

K. Cheng, Z. Qiao, and C. Wang, A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability, J. Sci. Comput., 81:154-185, 2019.

[5]

J. Du and Y. Yang, Third-order conservative sign-preserving and steady-state-preserving time integrations and applications in stiff multispecies and multireaction detonations, J. Comput. Phys., 395:489-510, 2019.

[6]

Q. Du, L. Ju, X. Li, and Z. Qiao, Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes, SIAM Rev., 63:317-359, 2021.

[7]

K. Elder, M. Katakowski, M. Haataja, and M. Grant, Modeling elasticity in crystal growth, Phys. Rev. Lett., 88:245701, 2002.

[8]

D. J. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, Mater. Res. Soc. Symp. Proc., 529:39-46, 1998

[9]

Z. Fu, T. Tang, and J. Yang, Energy diminishing implicit-explicit Runge-Kutta methods for gradient flows, Math. Comp., 94:2745-2767, 2024.

[10]

Z. Fu and J. Yang, Energy-decreasing exponential time differencing Runge-Kutta methods for phasefield models, J. Comput. Phys., 454:110943, 2022.

[11]

K. Glasner and S. Orizaga, Improving the accuracy of convexity splitting methods for gradient flow equations, J. Comput. Phys., 315:52-64, 2016.

[12]

E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, in: Springer Series in Computational Mathematics, Vol. 8, Springer-Verlag, 1993.

[13]

Y. Hao, Q. Huang, and C. Wang, A third order BDF energy stable linear scheme for the no-slopeselection thin film model, Commun. Comput. Phys., 29:905-929, 2021.

[14]

M. Hochbruck, J. Leibold, and A. Ostermann, On the convergence of Lawson methods for semilinear stiff problems, Numer. Math., 145:553-580, 2020.

[15]

D. Hou, L. Ju, and Z. Qiao, A linear second-order maximum bound principle-preserving BDF scheme for the Allen-Cahn equation with a general mobility, Math. Comp., 92:2515-2542, 2023.

[16]

T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, Removing the stiffness from interfacial flows with surface tension, J. Comput. Phys., 114:312-338, 1994.

[17]

J. Huang and C.-W. Shu, Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms, J. Comput. Phys., 361:111135, 2018.

[18]

L. Isherwood, Z. J. Grant, and S. Gottlieb, Strong stability preserving integrating factor RungeKutta methods, SIAM J. Numer. Anal., 56:3276-3307, 2018.

[19]

L. Ju, X. Li, and Z. Qiao, Stabilized exponential-SAV schemes preserving energy dissipation law and maximum bound principle for the Allen-Cahn type equations, J. Sci. Comput., 92:66, 2022.

[20]

L. Ju, X. Li, Z. Qiao, and J. Yang, Maximum bound principle preserving integrating factor RungeKutta methods for semilinear parabolic equations, J. Comput. Phys., 439:110405, 2021.

[21]

L. Ju, X. Li, Z. Qiao, and H. Zhang, Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection, Math. Comp., 87:18591885, 2018.

[22]

A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput., 26:1214-1233, 2005.

[23]

S. Krogstad, J. Comput. Generalized integrating factor methods for stiff PDEs, Phys., 203:72-88, 2005.

[24]

J. D. Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal., 4:372-380, 1967.

[25]

P. H. Leo, J. S. Lowengrub, and H.-J. Jou, A diffuse interface model for microstructural evolution in elastically stressed solids, Acta Mater., 46:2113-2130, 1998.

[26]

B. Li and J.-G. Liu, Epitaxial growth without slope selection: Energetics, coarsening, and dynamic scaling, J. Nonlinear Sci., 14:429-451, 2004.

[27]

D. Li and Z. Qiao, On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations, J. Sci. Comput., 70:301-341, 2017.

[28]

D. Li and Z. Qiao, On the stabilization size of semi-implicit Fourier-spectral methods for 3D CahnHilliard equations, Commun. Math. Sci., 15:1489-1506, 2017.

[29]

D. Li, Z. Qiao, and T. Tang, Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations, SIAM J. Numer. Anal., 54:1653-1681, 2016.

[30]

X. Li, Z. Qiao, C. Wang, and N. Zheng, Global-in-time energy stability analysis for the exponential time differencing Runge-Kutta scheme for the phase field crystal equation, arXiv:2406.06272, 2024.

[31]

H.-l. Liao and Y. Kang, L2 norm error estimates of BDF methods up to fifth-order for the phase field crystal model, IMA J. Numer. Anal., 44(4):2138-2164, 2024.

[32]

H.-l. Liao, Y. Kang, and W. Han, Discrete gradient structures of BDF methods up to fifth-order for the phase field crystal model, arXiv:2201.00609, 2022.

[33]

S. Maset and M. Zennaro, Unconditional stability of explicit exponential Runge-Kutta methods for semi-linear ordinary differential equations, Math. Comp., 78:957-967, 2009.

[34]

S. Pei, Y. Hou, and B. You, A linearly second-order energy stable scheme for the phase field crystal model, Appl. Numer. Math., 140:134-164, 2019.

[35]

L. Ratke and P. W. Voorhees, Growth and Coarsening: Ostwald Ripening in Material Processing, Springer, 2002.

[36]

J. Shen, C. Wang, X. Wang, and S. M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50:105-125, 2012.

[37]

J. Shen, J. Xu, and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353:407-416, 2018.

[38]

J. Shen, J. Xu, and J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61:474-506, 2019.

[39]

J. Shen and X. Yang, Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows, Chinese Ann. Math. Ser. B, 31:743-758, 2010.

[40]

J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 28:1669-1691, 2010.

[41]

J. Sun, H. Zhang, X. Qian, and S. Song, A family of structure-preserving exponential time differencing Runge-Kutta schemes for the viscous Cahn-Hilliard equation, J. Comput. Phys., 492:112414, 2023.

[42]

J. Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy, Academic Press, 2012.

[43]

P. Vignal, L. Dalcin, D. L. Brown, N. Collier, and V. M. Calo, An energy-stable convex splitting for the phase-field crystal equation, Comput. Struct., 158:355-368, 2015.

[44]

S. M. Wise, C. Wang, and J. S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47:2269-2288, 2009.

[45]

X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends, J. Comput. Phys., 327:294-316, 2016.

[46]

X. Yang, J. Zhao, and Q. Wang, Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, J. Comput. Phys., 333:104-127, 2017.

[47]

H. Zhang, L. Liu, X. Qian, and S. Song, Large time-stepping, delay-free, and invariant-set-preserving integrators for the viscous Cahn-Hilliard-Oono equation, J. Comput. Phys., 499:112708, 2024.

[48]

H. Zhang, X. Qian, and S. Song, Third-order accurate, large time-stepping and maximum-principle-preserving schemes for the Allen-Cahn equation, Numer. Algorithms, 95:1213-1250, 2024.

[49]

H. Zhang, X. Qian, J. Xia, and S. Song, Efficient inequality-preserving integrators for differential equations satisfying forward Euler conditions, ESAIM Math. Model. Numer. Anal., 57:16191655, 2023.

[50]

H. Zhang, X. Qian, J. Xia, and S. Song, Unconditionally maximum-principle-preserving parametric integrating factor two-step Runge-Kutta schemes for parabolic sine-gordon equations, CSIAM Trans. Appl. Math., 4:177-224, 2023.

[51]

H. Zhang, H. Wang, and X. Teng, A second-order, global-in-time energy stable implicit-explicit Runge-Kutta scheme for the phase field crystal equation, SIAM J. Numer. Anal., 62(6):2667-2697, 2024.

[52]

H. Zhang, J. Yan, X. Qian, X. Chen, and S. Song, Explicit third-order unconditionally structurepreserving schemes for conservative Allen-Cahn equations, J. Sci. Comput., 90:1-29, 2022.

[53]

H. Zhang, J. Yan, X. Qian, and S. Song, Up to fourth-order unconditionally structure-preserving parametric single-step methods for semilinear parabolic equations, Comput. Methods Appl. Mech. Engrg., 393:114817, 2022.

[54]

H. Zhang, G. Zhang, Z. Liu, X. Qian, and S. Song, Adv. Comput. On the maximum principle and high-order, delay-free integrators for the viscous Cahn-Hilliard equation, Math., 50:1-46, 2024.

AI Summary AI Mindmap
PDF (634KB)

267

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/