Numerical Analysis of Finite Dimensional Approximations in Finite Temperature DFT

Ge Xu , Huajie Chen , Xingyu Gao

CSIAM Trans. Appl. Math. ›› 2025, Vol. 6 ›› Issue (2) : 412 -434.

PDF (63KB)
CSIAM Trans. Appl. Math. ›› 2025, Vol. 6 ›› Issue (2) : 412 -434. DOI: 10.4208/csiam-am.SO-2024-0015
research-article

Numerical Analysis of Finite Dimensional Approximations in Finite Temperature DFT

Author information +
History +
PDF (63KB)

Abstract

In this paper, we study numerical approximations of the ground states in finite temperature density functional theory. We formulate the problem with respect to the density matrices and justify the convergence of the finite dimensional approximations. Moreover, we provide an optimal a priori error estimate under some mild assumptions and present some numerical experiments to support the theory.

Keywords

Finite temperature density functional theory / Mermin-Kohn-Sham equation / density matrix / a priori error estimates

Cite this article

Download citation ▾
Ge Xu, Huajie Chen, Xingyu Gao. Numerical Analysis of Finite Dimensional Approximations in Finite Temperature DFT. CSIAM Trans. Appl. Math., 2025, 6(2): 412-434 DOI:10.4208/csiam-am.SO-2024-0015

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF (63KB)

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/