Computational Imaging of Small-Amplitude Biperiodic Surfaces with Negative Index Material

Yuliang Wang

CSIAM Trans. Appl. Math. ›› 2025, Vol. 6 ›› Issue (1) : 148 -175.

PDF (782KB)
CSIAM Trans. Appl. Math. ›› 2025, Vol. 6 ›› Issue (1) : 148 -175. DOI: 10.4208/csiam-am.SO-2024-0008
research-article

Computational Imaging of Small-Amplitude Biperiodic Surfaces with Negative Index Material

Author information +
History +
PDF (782KB)

Abstract

This paper presents an innovative approach to computational acoustic imaging of biperiodic surfaces, exploiting the capabilities of an acoustic superlens to overcome the diffraction limit. We address the challenge of imaging physical entities in complex environments by considering the partial differential equations that govern the physics and solving the corresponding inverse problem. We focus on imaging infinite rough surfaces, specifically 2D diffraction gratings, and propose a method that leverages the transformed field expansion. We derive a reconstruction formula connecting the Fourier coefficients of the surface and the measured field, demonstrating the potential for unlimited resolution under ideal conditions. We also introduce an approximate discrepancy principle to determine the cut-off frequency for the truncated Fourier series expansion in surface profile reconstruction. Furthermore, we elucidate the resolution enhancement effect of the superlens by deriving the discrete Fourier transform of white Gaussian noise. Our numerical experiments confirm the effectiveness of the proposed method, demonstrating high subwavelength resolution even under slightly non-ideal conditions. This study extends the current understanding of superlens-based imaging and provides a robust framework for future research.

Keywords

Inverse scattering problems / superlens / metamaterial / superresolution / diffraction gratings

Cite this article

Download citation ▾
Yuliang Wang. Computational Imaging of Small-Amplitude Biperiodic Surfaces with Negative Index Material. CSIAM Trans. Appl. Math., 2025, 6(1): 148-175 DOI:10.4208/csiam-am.SO-2024-0008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Ambati, N. Fang, C. Sun, and X. Zhang, Surface resonant states and superlensing in acoustic metamaterials, Phys. Rev. B., 75(19):195447, 2007.

[2]

H. Ammari, Uniqueness theorems for an inverse problem in a doubly periodic structure, Inverse Probl., 11(4):823, 1995.

[3]

H. Ammari, B. Fitzpatrick, H. Lee, S. Yu, and H. Zhang, Double-negative acoustic metamaterials, Quart. Appl. Math., 77(4):767-791, 2019.

[4]

T. Arens and A. Kirsch, The factorization method in inverse scattering from periodic structures, Inverse Probl., 19(5):1195, 2003.

[5]

G. Bao, A uniqueness theorem for an inverse problem in periodic diffractive optics, Inverse Probl., 10(2):335, 1994.

[6]

G. Bao, T. Cui, and P. Li, Inverse diffraction grating of Maxwell's equations in biperiodic structures, Opt. Express, 22(4):4799-4816, 2014.

[7]

G. Bao and P. Li, Near-field imaging of infinite rough surfaces, SIAM J. Appl. Math., 73(6):21622187, 2013.

[8]

G. Bao and P. Li, Convergence analysis in near-field imaging, Inverse Probl., 30(8):85008, 2014.

[9]

G. Bao and P. Li, Near-field imaging of infinite rough surfaces in dielectric media, SIAM J. Imaging Sci., 7(2):867-899, 2014.

[10]

G. Bao, P. Li, and H. Wu, A computational inverse diffraction grating problem, J. Opt. Soc. Am. A, 29(4):394-399, 2012.

[11]

G. Bao and Z. Zhou, An inverse problem for scattering by a doubly periodic structure, T. Am. Math. Soc., 350(10):4089-4103, 1998.

[12]

G. Bruckner, J. Cheng, and M. Yamamoto, An inverse problem in diffractive optics: Conditional stability, Inverse Probl., 18(2):415, 2002.

[13]

G. Bruckner and J. Elschner, A two-step algorithm for the reconstruction of perfectly reflecting periodic profiles, Inverse Probl., 19(2):315, 2003.

[14]

T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, Soft 3D acoustic metamaterial with negative index, Nat. Mater., 14(4):384388, 2015.

[15]

T. Cheng, P. Li, and Y. Wang, Near-field imaging of perfectly conducting grating surfaces, J. Opt. Soc. Am. A, 30(12):2473-2481, 2013.

[16]

S. A. Cummer, J. Christensen, and A. Alù, Controlling sound with acoustic metamaterials, Nat. Rev. Mater., 1(3):1-13, 2016.

[17]

K. Deng, Y. Ding, Z. He, H. Zhao, J. Shi, and Z. Liu, Theoretical study of subwavelength imaging by acoustic metamaterial slabs, J. Appl. Phys., 105(12):124909, 2009.

[18]

Y. Ding, Z. Liu, C. Qiu, and J. Shi, Metamaterial with simultaneously negative bulk modulus and mass density, Phys. Rev. Lett., 99(9):93904, 2007.

[19]

H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, in: Mathematics and Its Applications, Vol. 375, Springer, 1996.

[20]

L. Fok and X. Zhang, Negative acoustic index metamaterial, Phys. Rev. B, 83(21):214304, 2011.

[21]

H. Ge, M. Yang, C. Ma, M. H. Lu, Y. F. Chen, N. Fang, and P. Sheng, Breaking the barriers: Advances in acoustic functional materials, Natl. Sci. Rev., 5(2):159-182, 2018.

[22]

F. Hettlich, Iterative regularization schemes in inverse scattering by periodic structures, Inverse Probl., 18(3):701, 2002.

[23]

F. Hettlich and A. Kirsch, Schiffer's theorem in inverse scattering theory for periodic structures, Inverse Probl., 13(2):351, 1997.

[24]

G. Hu, Y. Lu, and B. Zhang, The factorization method for inverse elastic scattering from periodic structures, Inverse Probl., 29(11):115005, 2013.

[25]

X. Jiang and P. Li, Inverse electromagnetic diffraction by biperiodic dielectric gratings, Inverse Probl., 33(8):85004, 2017.

[26]

A. Kirsch, Uniqueness theorems in inverse scattering theory for periodic structures, Inverse Probl., 10(1):145, 1994.

[27]

A. Lechleiter and D.L. Nguyen, Factorization method for electromagnetic inverse scattering from biperiodic structures, SIAM J. Imaging Sci., 6(2):1111-1139, 2013.

[28]

J. Li and C. T. Chan, Double-negative acoustic metamaterial, Phys. Rev. E, 70(5):55602, 2004.

[29]

P. Li and Y. Wang, Near-field imaging of interior cavities, Commun. Comput. Phys., 17(2):542563, 2015.

[30]

P. Li and Y. Wang, Near-field imaging of obstacles, Inverse Probl. Imag., 9(1):189, 2015.

[31]

P. Li and Y. Wang, Near-field imaging of small perturbed obstacles for elastic waves, Inverse Probl., 31(8):85010, 2015.

[32]

P. Li and Y. Wang, Numerical solution of an inverse obstacle scattering problem with near-field data, J. Comput. Phys., 290:157-168, 2015.

[33]

P. Li and Y. Wang, Inverse scattering of periodic surfaces with a superlens, Opt. Express, 31(19): 30894, 2023.

[34]

P. Li, Y. Wang, and Y. Zhao, Convergence analysis in near-field imaging for elastic waves, Appl. Anal., 95(11):2339-2360, 2015.

[35]

P. Li, Y. Wang, and Y. Zhao, Inverse elastic surface scattering with near-field data, Inverse Probl., 31(3):35009, 2015.

[36]

P. Li, Y. Wang, and Y. Zhao, Near-field imaging of biperiodic surfaces for elastic waves, J. Comput. Phys., 324:1-23, 2016.

[37]

A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics, Cambridge University Press, 2010.

[38]

M. H. Lu, X. K. Liu, L. Feng, J. Li, C. P. Huang, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, Extraordinary acoustic transmission through a 1D grating with very narrow apertures, Phys. Rev. Lett., 99(17):174301, 2007.

[39]

D. P. Nicholls and F. Reitich, J. Opt. Soc. Shape deformations in rough-surface scattering: Improved algorithms, Am. A, 21(4):606-621, 2004.

[40]

J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett., 85(18):3966, 2000.

[41]

A. Rathsfeld, G. C. Hsiao, and J. Elschner, Grating profile reconstruction based on finite elements and optimization techniques, SIAM J. Appl. Math., 64(2):525-545, 2004.

[42]

D. Torrent, Acoustic anomalous reflectors based on diffraction grating engineering, Phys. Rev. B., 98(6):60101, 2018.

[43]

V. G. Veselago, Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities, Sov. Phys. Uspekhi, 92(7):517, 1968.

[44]

X. Xu, G. Hu, B. Zhang, and H. Zhang, Uniqueness in inverse diffraction grating problems with infinitely many plane waves at a fixed frequency, SIAM J. App. Math., 83(1):302-326, 2023.

[45]

J. Yang, B. Zhang, and R. Zhang, Reconstruction of penetrable grating profiles, Inverse Probl. Imag., 7(4):1393-1407, 2013.

[46]

J. Yang, B. Zhang, and R. Zhang, Near-field imaging of periodic interfaces in multilayered media, Inverse Probl., 32(3):35010, 2016.

[47]

X. Yu, Z. Lu, T. Liu, L. Cheng, J. Zhu, and F. Cui, Sound transmission through a periodic acoustic metamaterial grating, J. Sound Vib., 449:140-156, 2019.

[48]

R. Zhang and J. Sun, Efficient finite element method for grating profile reconstruction, J. Comput. Phys., 302:405-419, 2015.

[49]

R. Zhang and B. Zhang, Near-field imaging of periodic inhomogeneous media, Inverse Probl., 30(4):45004, 2014.

[50]

J. Zheng, J. Cheng, P. Li, and S. Lu, Periodic surface identification with phase or phaseless near-field data, Inverse Probl., 33(11):115004, 2017.

AI Summary AI Mindmap
PDF (782KB)

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/