A Variational Discretization Method for Mean Curvature Flows by the Onsager Principle

Yihe Liu , Xianmin Xu

CSIAM Trans. Appl. Math. ›› 2025, Vol. 6 ›› Issue (1) : 63 -95.

PDF (448KB)
CSIAM Trans. Appl. Math. ›› 2025, Vol. 6 ›› Issue (1) : 63 -95. DOI: 10.4208/csiam-am.SO-2024-0005
research-article

A Variational Discretization Method for Mean Curvature Flows by the Onsager Principle

Author information +
History +
PDF (448KB)

Abstract

The mean curvature flow describes the evolution of a surface (a curve) with normal velocity proportional to the local mean curvature. It has many applications in mathematics, science and engineering. In this paper, we develop a numerical method for mean curvature flows by using the Onsager principle as an approximation tool. We first show that the mean curvature flow can be derived naturally from the Onsager variational principle. Then we consider a piecewise linear approximation of the curve and derive a discrete geometric flow. The discrete flow is described by a system of ordinary differential equations for the nodes of the discrete curve. We prove that the discrete system preserve the energy dissipation structure in the framework of the Onsager principle and this implies the energy decreasing property. The ODE system can be solved by the improved Euler scheme and this leads to an efficient fully discrete scheme. We first consider the method for a simple mean curvature flow and then extend it to the volume preserving mean curvature flow and also a wetting problem on substrates. Numerical examples show that the method has optimal convergence rate and works well for all the three problems.

Keywords

Mean curvature flow / the Onsager principle / moving finite element method

Cite this article

Download citation ▾
Yihe Liu, Xianmin Xu. A Variational Discretization Method for Mean Curvature Flows by the Onsager Principle. CSIAM Trans. Appl. Math., 2025, 6(1): 63-95 DOI:10.4208/csiam-am.SO-2024-0005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Bai and B. Li, A new approach to the analysis of parametric finite element approximations to mean curvature flow, Found. Comput. Math., 2023. DOI: https://doi.org/10.1007/s10208-023-09622-x

[2]

W. Bao, H. Garcke, R. Nürnberg, and Q. Zhao, Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations, J. Comput. Phys., 460:111180, 2022.

[3]

W. Bao, W. Jiang, and Y. Li, A symmetrized parametric finite element method for anisotropic surface diffusion of closed curves, SIAM J. Numer. Anal., 61:617-641, 2023.

[4]

W. Bao and Q. Zhao, A structure-preserving parametric finite element method for surface diffusion, SIAM J. Numer. Anal., 59:2775-2799, 2021.

[5]

J. W. Barrett, H. Garcke, and R. Nürnberg, On the variational approximation of combined second and fourth order geometric evolution equations, SIAM J. Sci. Comput., 29:1006-1041, 2007.

[6]

J. W. Barrett, H. Garcke, and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in ${\mathbb{R}}^{3}$, J. Comput. Phys., 227:4281-4307, 2008.

[7]

J. W. Barrett, H. Garcke, and R. Nürnberg, Parametric approximation of Willmore flow and related geometric evolution equations, SIAM J. Sci. Comput., 31:225-253, 2008.

[8]

J. W. Barrett, H. Garcke, and R. Nürnberg, Numerical approximation of gradient flows for closed curves in ${\mathbb{R}}^{d}$, IMA J. Numer. Anal., 30:4-60, 2010.

[9]

J. W. Barrett, H. Garcke, and R. Nürnberg, The approximation of planar curve evolutions by stable fully implicit finite element schemes that equidistribute, Numer. Methods Partial Differential Equations, 27:1-30, 2011.

[10]

J. W. Barrett, H. Garcke, and R. Nürnberg, Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves, Numer. Math., 120:489-542, 2012.

[11]

J. W. Barrett, H. Garcke, and R. Nurnberg, Parametric finite element approximations of curvaturedriven interface evolutions, in: Handbook of Numerical Analysis, Vol. 21, Elsevier, 275-423, 2020.

[12]

Y. G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33:749-786, 1991.

[13]

S. Dai, F. Wang, Y. Xiang, J. Z. Yang, and C. Yuan, Boundary condition for dislocation dynamic simulation in BCC crystal, CSIAM Trans. Appl. Math., 2:175-194, 2021.

[14]

K. Deckelnick and G. Dziuk, On the approximation of the curve shortening flow, in: Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, 100-108, 1995.

[15]

K. Deckelnick, G. Dziuk, and C. M. Elliott, Computation of geometric partial differential equations and mean curvature flow, Acta Numer., 14:139-232, 2005.

[16]

Y. Di, X. Xu, and M. Doi, Theoretical analysis for meniscus rise of a liquid contained between a flexible film and a solid wall, Europhys. Lett., 113:36001, 2016.

[17]

M. Doi, Soft Matter Physics, Oxford University Press, 2013.

[18]

M. Doi, Onsager principle as a tool for approximation, Chin. Phys. B, 24:020505, 2015.

[19]

G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math., 58:603-611, 1990.

[20]

D. A. Edwards, H. Brenner, and D. T. Wasan, Interfacial Transport Processes and Rheology, Butterworth-Heinemann, 1991.

[21]

J. J. Eggleston, G. B. McFadden, and P. W. Voorhees, A phase-field model for highly anisotropic interfacial energy, Phys. D, 150:91-103, 2001.

[22]

C. M. Elliott and H. Fritz, On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick, IMA J. Numer. Anal., 37:543-603, 2017.

[23]

S. Esedoğ Lu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions, Comm. Pure Appl. Math., 68:808-864, 2015.

[24]

L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45:1097-1123, 1992.

[25]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I. J. Differential Geom., 33:635-681, 1991.

[26]

X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numer. Math., 94:33-65, 2003.

[27]

E. Gallagher, Curve Shortening Flow, PhD Thesis, Durham University, 2020.

[28]

J. Hu and B. Li, Evolving finite element methods with an artificial tangential velocity for mean curvature flow and Willmore flow, Numer. Math., 152:127-181, 2022.

[29]

W. Jiang and B. Li, A perimeter-decreasing and area-conserving algorithm for surface diffusion flow of curves, J. Comput. Phys., 443:110531, 2021.

[30]

W. Jiang, Q. Zhao, T. Qian, D. J. Srolovitz, and W. Bao, Application of Onsager's variational principle to the dynamics of a solid toroidal island on a substrate, Acta Mater., 163:154-160, 2019.

[31]

B. Kovács, B. Li, and C. Lubich, A convergent evolving finite element algorithm for mean curvature flow of closed surfaces, Numer. Math., 143:797-853, 2019.

[32]

B. Kovács, B. Li, and C. Lubich, A convergent evolving finite element algorithm for Willmore flow of closed surfaces, Numer. Math., 149:595-643, 2021.

[33]

B. Li, Convergence of Dziuk's linearly implicit parametric finite element method for curve shortening flow, SIAM J. Numer. Anal., 58:2315-2333, 2020.

[34]

B. Li, Convergence of Dziuk's semidiscrete finite element method for mean curvature flow of closed surfaces with high-order finite elements, SIAM J. Numer. Anal., 59:1592-1617, 2021.

[35]

B. Li et al., Parametric finite element approximations of curvature flows, Math. Numer. Sin., 44:145-162, 2022.

[36]

Y. Li and W. Bao, An energy-stable parametric finite element method for anisotropic surface diffusion, J. Comput. Phys., 446:110658, 2021.

[37]

S. Lu and X. Xu, An efficient diffusion generated motion method for wetting dynamics, J. Comput. Phys., 441:110476, 2021.

[38]

X. Man and M. Doi, Ring to mountain transition in deposition pattern of drying droplets, Phys. Rev. Lett., 116:066101, 2016.

[39]

B. Merriman, J. K. Bence, and S. J. Osher, Motion of multiple junctions: A level set approach, J. Comput. Phys., 112:334-363, 1994.

[40]

W. W. Mullins, J. Appl. Theory of thermal grooving, Phys., 28:333-339, 1957.

[41]

R. K. Niven, L. Cordier, E. Kaiser, M. Schlegel, and B. R. Noack, Rethinking the Reynolds transport theorem, Liouville equation, and Perron-Frobenius and Koopman operators, ArXiv:1810.06022, 2018.

[42]

L. Onsager, Reciprocal relations in irreversible processes. I, Phys. Rev., 37:405-426, 1931.

[43]

L. Onsager, Reciprocal relations in irreversible processes. II, Phys. Rev., 38:2265-2279, 1931.

[44]

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79:12-49, 1988.

[45]

J. Rubinstein, P. Sternberg, and J. B. Keller, Fast reaction, slow diffusion, and curve shortening, SIAM J. Appl. Math., 49:116-133, 1989.

[46]

S. J. Ruuth and B. T. Wetton, A simple scheme for volume-preserving motion by mean curvature, J. Sci. Comput., 19:373-384, 2003.

[47]

R. I. Saye and J. A. Sethian, A review of level set methods to model interfaces moving under complex physics: Recent challenges and advances, in: Handbook of Numerical Analysis, Elsevier, 21:509554, 2020.

[48]

J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, in: Cambridge Monograph on Applied and Computational Mathematics, Vol. 98, Cambridge University Press, 1999.

[49]

D. Wang, X. Wang, and X. Xu, An improved threshold dynamics method for wetting dynamics, J. Comput. Phys., 392:291-310, 2019.

[50]

X. Xu, Y. Di, and M. Doi, Variational method for contact line problems in sliding liquids, Phys. Fluids, 28:087101, 2016.

[51]

X. Xu, D. Wang, and X. Wang, An efficient threshold dynamics method for wetting on rough surfaces, J. Comput. Phys., 330:510-528, 2016.

[52]

T. Young, Philos. Trans. An essay on the cohesion of fluids, Roy. Soc., 95:65-87, 1805.

[53]

H.-K. Zhao, T. Chan, B. Merriman, and S. Osher, A variational level set approach to multiphase motion, J. Comput. Phys., 127:179-195, 1996.

[54]

Q. Zhao, W. Jiang, and W. Bao, An energy-stable parametric finite element method for simulating solid-state dewetting, IMA J. Numer. Anal., 41:2026-2055, 2021.

[55]

J. Zhou, Y. Jiang, and M. Doi, Cross interaction drives stratification in drying film of binary colloidal mixtures, Phys. Rev. Lett., 118:108002, 2017.

AI Summary AI Mindmap
PDF (448KB)

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/