Dynamic Pricing with Surging Demand

Lijun Bo , Yijie Huang

CSIAM Trans. Appl. Math. ›› 2024, Vol. 5 ›› Issue (1) : 142 -181.

PDF (728KB)
CSIAM Trans. Appl. Math. ›› 2024, Vol. 5 ›› Issue (1) : 142 -181. DOI: 10.4208/csiam-am.SO-2023-0034
research-article

Dynamic Pricing with Surging Demand

Author information +
History +
PDF (728KB)

Abstract

This paper considers the case of a firm's dynamic pricing problem for a nonperishable product experiencing surging demand caused by rare events modelled by a marked point process. The firm aims to maximize its running revenue by selecting an optimal price process for the product until its inventory is depleted. Using the dynamic program and inspired by the viscosity solution technique, we solve the resulting integro-differential Hamilton-Jacobi-Bellman (HJB) equation and prove that the value function is its unique classical solution. We also establish structural properties for our problem and find that the optimal price always decreases with initial inventory level in the absence of surging demand. However, with surging demand, we find that the optimal price could increase rather than decrease at the initial inventory level.

Keywords

Dynamic pricing / surging demand / HJB equation / viscosity solution / linear demand

Cite this article

Download citation ▾
Lijun Bo, Yijie Huang. Dynamic Pricing with Surging Demand. CSIAM Trans. Appl. Math., 2024, 5(1): 142-181 DOI:10.4208/csiam-am.SO-2023-0034

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. Adida and G. Perakis, Dynamic pricing and inventory control: Robust vs. stochastic uncertainty models - a computational study, Ann. Oper. Res., 181(1):125-157, 2010.

[2]

O. Alvarez, J.-M. Lasry, and P.-L. Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl., 76(3):265-288, 1997.

[3]

V. F. Araman and R. Caldentey, Dynamic pricing for nonperishable products with demand learning, Oper. Res., 57(5):1169-1188, 2009.

[4]

G. Barles and C. Imbert, Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited, Ann. I. H. Poincare-An., 25(3):567-585, 2008.

[5]

G. Barles and E. Rouy, A strong comparison result for the Bellman equation arising in stochastic exit time control problems and its applications, Comm. Partial Differential Equations, 23(11): 1995-2033, 1998.

[6]

E. Bayraktar, Q. Song, and J. Yang, On the continuity of stochastic exit time control problems, Stoch. Anal. Appl., 29(1):48-60, 2010.

[7]

G. R. Bitran and S. V. Mondschein, Periodic pricing of seasonal products in retailing, Manage. Sci., 43(1): 64-79, 1997.

[8]

R. Buckdahn and T. Nie, Generalized Hamilton-Jacobi-Bellman equations with Dirichlet boundary condition and stochastic exit time optimal control problem, SIAM. J. Contr. Optim., 54(2):602-631, 2016.

[9]

N. Cai, On first passage times of a hyper-exponential jump diffusion process, Oper. Res. Lett., 37(2):127-134, 2009.

[10]

N. Cai and S. G. Kou, Option pricing under a mixed-exponential jump diffusion model, Manage. Sci., 57(11):2067-2081, 2011.

[11]

P. Cao, J. Li, and H. Yan, Optimal dynamic pricing of inventories with stochastic demand and discounted criterion, European J. Oper. Res., 217(3):580-588, 2012.

[12]

H. Chen, O. Q. Wu, and D. D. Yao, On the benefit of inventory-based dynamic pricing strategies, Prod. Oper. Manag., 19(3):249-260, 2010.

[13]

N. Chen and G. Gallego, Welfare analysis of dynamic pricing, Manage. Sci., 65(1):139-151, 2019.

[14]

M. G. Crandall and H. Ishii, The maximum principle for semicontinuous functions, Differ. Integral Equ., 3(6):1001-1014, 1990.

[15]

M. G. Crandall, H. Ishii, and P.-L. Lions, Users guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27(1):1-67, 1992.

[16]

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277(1):1-42, 1983.

[17]

M. Davis and S. Lleo, Jump-diffusion risk-sensitive asset management II: Jump-diffusion factor model, SIAM J. Control Optim., 51(2):1441-1480, 2013.

[18]

G. Gallego and G. Van Ryzin, Optimal dynamic pricing of inventories with stochastic demand over finite horizons, Manage. Sci., 40(8):999-1020, 1994.

[19]

O. Hernández-Lerma, and J. B. Lasserre, Discrete-Time Markov Control Processes: Basic Optimality Criteria,in: Stochastic Modelling and Applied Probability, Vol. 30, Springer, 2012.

[20]

W. T. Huh, and G. Janakiraman, (s,S) optimality in joint inventory-pricing control: An alternate approach, Oper. Res., 56(3):783-790, 2008.

[21]

R. Johansson, Another look at availability and prices of food amid the COVID-19 pandemic, https://www.usda.gov/media/blog/2020/05/28/another-look-availability-and-prices-food-amid-covid-19-pandemic, 2021.

[22]

Y. Kanoria, I. Lobel, and J. Lu, Managing customer churn via service mode control, Math. Oper. Res., To appear.

[23]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, in: Graduate Texts in Mathematics, Vol. 113, Springer, 1991.

[24]

A. Palmer, Amazon, Walmart and others battle price gouging on coronavirus-related products, https://www.cnbc.com/2020/03/03/amazon-walmart-e-retailers-battle-price-gouging-on-coronavirus-products.html, 2020.

[25]

S. Peng and X. Zhu, Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stochastic Process. Appl., 116(3):370-380, 2006.

[26]

H. Pham, Continuous-Time Stochastic Control and Optimization with Financial Applications, in: Stochastic Modelling and Applied Probability, Vol. 61, Springer, 2009.

[27]

K. Raman and R. Chatterjee, Optimal monopolist pricing under demand uncertainty in dynamic markets, Manage. Sci., 41(1):144-162, 1995.

[28]

S. Ray and E. M. Jewkes, Customer lead time management when both demand and price are lead time sensitive, European J. Oper. Res., 153(3):769-781, 2004.

[29]

R. C. Seydel, Existence and uniqueness of viscosity solutions for QVI associated with impulse control of jump-diffusions, Stochastic Process. Appl., 119(10):3719-3748, 2009.

[30]

I. Stamatopoulos and C. Tzamos, Design and dynamic pricing of vertically differentiated inventories, Manage. Sci., 65(9):4222-4241, 2019.

[31]

B. Strulovici and M. Szydlowski, On the smoothness of value functions and the existence of optimal strategies in diffusion models, J. Econ. Theor., 159:1016-1055, 2015.

[32]

B. Sun, X. Sun, D. H. Tsang, and W. Whitt, Optimal battery purchasing and charging strategy at electric vehicle battery swap stations, European J. Oper. Res., 279(2):524-539, 2019.

[33]

W. Walter, Ordinary Differential Equations, in: Graduate Texts in Mathematics, Vol. 182, Springer, 1998.

[34]

S. Wang and G.F. Özkan-Seely, Signaling product quality through a trial period, Oper. Res., 66(2):301-312, 2018.

[35]

J. Wu and X. Cao, Optimal control of a Brownian production/inventory system with average cost criterion, Math. Oper. Res., 39(1):163-189, 2014.

[36]

Z. H. Wu, A cluster identification framework illustrated by a filtering model for earthquake occurrences, Bernoulli, 15(2):357-379, 2009.

[37]

X. Xu and W. J. Hopp, A monopolistic and oligopolistic stochastic flow revenue management model, Oper. Res., 54(6):1098-1109, 2006.

[38]

W. Zhao and Y.-S. Zheng, Optimal dynamic pricing for perishable assets with nonhomogeneous demand, Manage. Sci., 46(3):375-388, 2000.

AI Summary AI Mindmap
PDF (728KB)

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/