PDF
(477KB)
Abstract
We introduce a two-step numerical scheme for reconstructing the shape of a triangle by its Dirichlet spectrum. With the help of the asymptotic behavior of the heat trace, the first step is to determine the area, the perimeter, and the sum of the reciprocals of the angles of the triangle. The shape is then reconstructed, in the second step, by an application of the Newton's iterative method or the Levenberg-Marquardt algorithm for solving a nonlinear system of equations on the angles. Numerically, we have used only finitely many eigenvalues to reconstruct the triangles. To our best knowledge, this is the first numerical simulation for the classical inverse spectrum problem in the plane. In addition, we give a counter example to show that, even if we have infinitely many eigenvalues, the shape of a quadrilateral may not be heard.
Keywords
Inverse spectral problems
/
Newton iteration
/
Vandermonde matrix
/
ill-posedness
/
triangles
Cite this article
Download citation ▾
Wei Gong, Xiaodong Liu, Jing Wang.
Hearing the Triangles: A Numerical Perspective.
CSIAM Trans. Appl. Math., 2024, 5(1): 58-72 DOI:10.4208/csiam-am.SO-2023-0027
| [1] |
P. R. S. Antunes, and P. Freitas, New bounds for the principal Dirichlet eigenvalue of planar regions, Exp. Math., 15(3):333-342, 2006
|
| [2] |
P. R. S. Antunes, and P. Freitas, A numerical study of the spectral gap, J. Phys. A Math. Theor., 41(5):055201, 2008.
|
| [3] |
P. R. S. Antunes, and P. Freitas, On the inverse spectral problem for Euclidean triangles, Proc. R. Soc. A., 467(2130):1546-1562, 2011.
|
| [4] |
M. van den Berg and S. Srisatkunarajah, Heat equation for a region in ${\mathbb{R}}^{2}$ with a polygonal boundary, J. Lond. Math. Soc. (2), 37(1):119-127, 1988.
|
| [5] |
P.-K. Chang and D. DeTurck, On hearing the shape of a triangle, Proc. Amer. Math. Soc., 105(4):1033-1038, 1989.
|
| [6] |
J. De Simoi, V. Kaloshin, and Q. Wei, Dynamical spectral rigidity among ${\mathbb{Z}}_{2}$-symmetric strictly convex domains close to a circle, Ann. Math., 186(1):277-314, 1989.
|
| [7] |
C. Durso, On the Inverse Spectral Problem for Polygonal Domains, PhD Thesis, Massachusetts Institute of Technology, 1990.
|
| [8] |
J. Fan and Y. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption, Computing, 74(1):23-39, 2005.
|
| [9] |
J. Gómez-Serrano and G. Orriols, Any three eigenvalues do not determine a triangle, J. Differential Equations, 275:920-938, 2021.
|
| [10] |
C. Gordon, D. Webb, and S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math., 110:1-22, 1992.
|
| [11] |
D. S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions, SIAM Review, 55(4):601-667, 2013.
|
| [12] |
D. Grieser and S. Maronna, Hearing the shape of a triangle, Notices Amer. Math. Soc., 60(11):1440-1447, 2013.
|
| [13] |
H. Hezari, Z. Lu, and J. Rowlett, The Dirichlet isospectral problem for trapezoids, J. Math. Phys., 62(5):051511, 2021.
|
| [14] |
H. Hezari and S. Zelditch, One can hear the shape of ellipses of small eccentricity, Ann. of Math. (2), 196(3):1083-1134, 2022.
|
| [15] |
M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly, 73:1-23, 1966.
|
| [16] |
J. R. Kuttler and V. G. Sigillito, Eigenvalues of the Laplacian in two dimensions, SIAM Review, 26(2):163-193, 1984.
|
| [17] |
R. S. Laugesen and B. A. Siudeja, Triangles and other special domains, in: A. Henrot. Shape Optimization and Spectral Theory, De Gruyter Open, 159-200, 2017.
|
| [18] |
Z. Lu and J. Rowlett, The sound of symmetry, Amer. Math. Monthly, 122(9):815-835, 2015.
|
| [19] |
H. P. McKean, Jr. and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geom., 1(1):43-69, 1967.
|
| [20] |
M. A. Pinsky, The eigenvalues of an equilateral triangle, SIAM J. Math. Anal., 11(5):819-827, 1980.
|
| [21] |
B. A. Siudeja, Sharp bounds for eigenvalues of triangles, Michigan Math. J., 55:243-254, 2007.
|
| [22] |
J. C. Sun, Pre-transformed methods for eigen-problems II: Eigen-structure for Laplace eigen-problem over arbitrary triangles, Math. Numer. Sin., 34(1):1-24, 2012.
|
| [23] |
S. Zelditch, Inverse spectral problem for analytic domains II: ${\mathbb{Z}}_{2}$-symmetric domains, Ann. Math., 170(1):205-269, 2009.
|