On the Mathematics of RNA Velocity II: Algorithmic Aspects

Tiejun Li , Yizhuo Wang , Guoguo Yang , Peijie Zhou

CSIAM Trans. Appl. Math. ›› 2024, Vol. 5 ›› Issue (1) : 182 -220.

PDF (1232KB)
CSIAM Trans. Appl. Math. ›› 2024, Vol. 5 ›› Issue (1) : 182 -220. DOI: 10.4208/csiam-am.SO-2023-0026
research-article

On the Mathematics of RNA Velocity II: Algorithmic Aspects

Author information +
History +
PDF (1232KB)

Abstract

In the previous paper [CSIAM Trans. Appl. Math. 2 (2021), 1-55], the authors proposed a theoretical framework for the analysis of RNA velocity, which is a promising concept in scRNA-seq data analysis to reveal the cell state-transition dynamical processes underlying snapshot data. The current paper is devoted to the algorithmic study of some key components in RNA velocity workflow. Four important points are addressed in this paper: (1) We construct a rational time-scale fixation method which can determine the global gene-shared latent time for cells. (2) We present an uncertainty quantification strategy for the inferred parameters obtained through the EM algorithm. (3) We establish the optimal criterion for the choice of velocity kernel bandwidth with respect to the sample size in the downstream analysis and discuss its implications. (4) We propose a temporal distance estimation approach between two cell clusters along the cellular development path. Some illustrative numerical tests are also carried out to verify our analysis. These results are intended to provide tools and insights in further development of RNA velocity type methods in the future.

Keywords

Time-scale fixation / uncertainty quantification / optimal kernel bandwidth / temporal distance estimation

Cite this article

Download citation ▾
Tiejun Li, Yizhuo Wang, Guoguo Yang, Peijie Zhou. On the Mathematics of RNA Velocity II: Algorithmic Aspects. CSIAM Trans. Appl. Math., 2024, 5(1): 182-220 DOI:10.4208/csiam-am.SO-2023-0026

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Atta, A. Sahoo, and J. Fan, Veloviz: RNA velocity-informed embeddings for visualizing cellular trajectories, Bioinformatics, 38(2):391-396, 2022.

[2]

C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory, Springer, 1999.

[3]

V. Bergen, M. Lange, S. Peidli, F. A. Wolf,and F. J. Theis, Generalizing RNA velocity to transient cell states through dynamical modeling, Nat. Biotechnol., 38(12):1408-1414, 2020.

[4]

F. Bocci, P. Zhou, and Q. Nie, SpliceJAC: Transition genes and state-specific gene regulation from single-cell transcriptome data, Mol. Syst. Biol., 18(11):e11176, 2022.

[5]

R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, Neural ordinary differential equations, Adv. Neural Inf. Process. Syst., 31:6572-6583, 2018.

[6]

Z. Chen, W. C. King, A. Hwang, M. Gerstein, and J. Zhang, DeepVelo: Single-cell transcriptomic deep velocity field learning with neural ordinary differential equations, Sci. Adv., 8:eabq3745, 2022.

[7]

J. Dong, P. Zhou, Y. Wu, Y. Chen, H. Xie, Y. Gao, J. Lu, J. Yang, X. Zhang, L. Wen, T. Li, and F. Tang, Integrating single-cell datasets with ambiguous batch information by incorporating molecular network features, Brief. Bioinformatics, 23(1):bbab366, 2022.

[8]

N. Eling, M. D. Morgan,and J. C. Marioni, Challenges in measuring and understanding biological noise, Nat. Rev. Genet., 20(9):536-548, 2019.

[9]

S. Farrell, M. Mani, and S. Goyal, Inferring single-cell transcriptomic dynamics with structured dynamical representations of RNA velocity, Bulletin of the American Physical Society, Vol. 68(3):N10.00002, 2023.

[10]

M. Gao, C. Qiao, and Y. Huang, UniTVelo: Temporally unified RNA velocity reinforces single-cell trajectory inference, Nat. Commun., 13(1):6586, 2022.

[11]

A. Gayoso, P. Weiler, M. Lotfollahi, D. Klein, J. Hong, A. M. Streets, F. J. Theis,and N. Yosef, Deep generative modeling of transcriptional dynamics for RNA velocity analysis in single cells, Nat. Methods, 2023, doi: 10.1038/s41592-023-01994-w.

[12]

G. Gorin, M. Fang, T. Chari, and L. Pachter, RNA velocity unraveled, PLoS Comput. Biol., 18(9):e1010492, 2022.

[13]

G. Gorin and L. Pachter, Modeling bursty transcription and splicing with the chemical master equation, Biophys. J., 121(6):1056-1069, 2022.

[14]

G. Gorin, J. J. Vastola, M. Fang, and L. Pachter, Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments, Nat. Commun., 13:7620, 2022.

[15]

Y. Gu, D. Blaauw, and J. D. Welch, Bayesian inference of RNA velocity from multi-lineage singlecell data, bioRxiv, 2022, doi: 10.1101/2022.07.08.499381v1.

[16]

L. Haghverdi, M. Büttner, F. A. Wolf, F. Buettner, and F. J. Theis, Diffusion pseudotime robustly reconstructs lineage branching, Nat. Methods, 13(10):845-848, 2016.

[17]

T. Hashimoto, Y. Sun, and T. Jaakkola, From random walks to distances on unweighted graphs, Adv. Neural Inf. Process. Syst., 28:3429-3437, 2015.

[18]

A. Hilfinger and J. Paulsson, Separating intrinsic from extrinsic fluctuations in dynamic biological systems, Proc. Natl. Acad. Sci. USA, 108(29):12167-12172, 2011.

[19]

R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1985.

[20]

J. Kemeny and J. Snell, Finite Markov Chains, Springer, 1976.

[21]

G. La Manno et al., RNA velocity of single cells, Nature, 560(7719):494-498, 2018.

[22]

S. S. Lafon, Diffusion Maps and Geometric Harmonics, Yale University, 2004.

[23]

M. Lange et al., CellRank for directed single-cell fate mapping, Nat. Methods, 19(2):159-170, 2022.

[24]

E. L. Lehmann and G. Casella, Theory of Point Estimation, Springer, 1998.

[25]

C. Li, M. C. Virgilio, K. L. Collins,and J. D. Welch, Multi-omic single-cell velocity models epigenome-transcriptome interactions and improves cell fate prediction, Nat. Biotechnol., 41(3):387-398, 2023.

[26]

T. Li, J. Shi, Y. Wu, and P. Zhou, On the mathematics of RNA velocity I: Theoretical analysis, CSIAM Trans. Appl. Math, 2(1):1-55, 2021.

[27]

R. Liu, A. O. Pisco, E. Braun, S. Linnarsson, and J. Zou, Dynamical systems model of RNA velocity improves inference of single-cell trajectory, pseudo-time and gene regulation, J. Mol. Biol., 434:167606, 2022.

[28]

J. Ma, J. Zhao, J. Tian, X. Bai, and Z. Tu, Regularized vector field learning with sparse approximation for mismatch removal, Pattern Recognit., 46(12):3519-3532, 2013.

[29]

V. Marot-Lassauzaie, B. J. Bouman, F. D. Donaghy, Y. Demerdash, M. A. G. Essers,and L. Haghverdi, Towards reliable quantification of cell state velocities, PLoS Comput. Biol., 18(9): e1010031, 2022.

[30]

L. McInnes, J. Healy, N. Saul, and L. Großberger, UMAP: Uniform manifold approximation and projection, J. Open Source Softw., 3(29):861, 2018.

[31]

L. Meng and J. C. Spall, Efficient computation of the Fisher information matrix in the EM algorithm, in: 51st Annual Conference on Information Sciences and Systems (CISS), IEEE, 2017, 1-6.

[32]

X.-L. Meng and D. B. Rubin, Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm, J. Am. Stat. Assoc., 86(416):899-909, 1991.

[33]

J. R. Norris, Markov Chains, Cambridge University Press, 1997.

[34]

C. Qiao and Y. Huang, Representation learning of RNA velocity reveals robust cell transitions, Proc. Natl. Acad. Sci. USA, 118(49):e2105859118, 2021.

[35]

Q. Qin, E. Bingham, G. La Manno, D. M. Langenau, and L. Pinello, Pyro-Velocity: Probabilistic RNA velocity inference from single-cell data, bioRxiv, 2022, doi: 10.1101/2022.09.12.507691.

[36]

X. Qiu et al., Mapping transcriptomic vector fields of single cells, Cell, 185(4):690-711.e45, 2022.

[37]

M. Setty, V. Kiseliovas, J. Levine, A. Gayoso, L. Mazutis, and D. Pe'er, Characterization of cell fate probabilities in single-cell data with palantir, Nat. Biotechnol., 37:451-460, 2019.

[38]

A. Singer, From graph to manifold Laplacian: The convergence rate, Appl. Comput. Harmon. Anal., 21(1):128-134, 2006.

[39]

J. C. Spall, Monte Carlo computation of the Fisher information matrix in nonstandard settings, J. Comput. Graph. Stat., 14(4):889-909, 2005.

[40]

S. Spigler, M. Geiger, and M. Wyart, Asymptotic learning curves of kernel methods: Empirical data versus teacher-student paradigm, J. Stat. Mech. Theory Exp., 2020:124001, 2020.

[41]

S. V. Stassen, G. G. Yip, K. K. Wong, J. W. Ho,and K. K. Tsia, Generalized and scalable trajectory inference in single-cell omics data with VIA, Nat. Commun., 12(1):5528, 2021.

[42]

F. Tang et al., mRNA-Seq whole-transcriptome analysis of a single cell, Nat. Methods, 6:377-382, 2009.

[43]

C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N. J. Lennon, K. J. Livak, T. S. Mikkelsen,and J. L. Rinn, Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions, Nat. Biotechnol., 32:381, 2014.

[44]

U. Von Luxburg, A. Radl, and M. Hein, Hitting and commute times in large random neighborhood graphs, J. Mach. Learn. Res., 15(52):1751-1798, 2014.

[45]

Y. Wang and T. Li, Inferring the RNA velocity with stochastic models, Peking University, preprint, 2023.

[46]

Y. Wang and Z. Wang, Inference on the structure of gene regulatory networks, J. Theor. Biol., 539:111055, 2022.

[47]

C. Weinreb, S. Wolock, B. K. Tusi, M. Socolovsky, and A. M. Klein, Fundamental limits on dynamic inference from single-cell snapshots, Proc. Natl. Acad. Sci. USA, 115(10):E2467-E2476, 2018.

[48]

F. A. Wolf, F. K. Hamey, M. Plass, J. Solana, J. S. Dahlin, B. Göttgens, N. Rajewsky, L. Simon, and F. J. Theis, PAGA: Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells, Genome Biol., 20:1-9, 2019.

[49]

S. Y. Zhang and M. P. H. Stumpf, Learning cell-specific networks from dynamical single cell data, bioRxiv, 2023, doi: 10.1101/2023.01.08.523176v2.

[50]

Z. Zhang and X. Zhang, Inference of high-resolution trajectories in single-cell RNA-seq data by using RNA velocity, Cell Rep. Methods, 1(6):100095, 2021.

[51]

P. Zhou, X. Gao, X. Li, L. Li, C. Niu, Q. Ouyang, H. Lou, T. Li, and F. Li, Stochasticity triggers activation of the S-phase checkpoint pathway in budding yeast, Phys. Rev. X, 11:011004, 2021.

[52]

P. Zhou, S. Wang, T. Li, and Q. Nie, Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics, Nat. Commun., 12:5609, 2021.

AI Summary AI Mindmap
PDF (1232KB)

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/