A New $\mathcal{L}1$-TFPM Scheme for the Singularly Perturbed Subdiffusion Equations

Wang Kong , Zhongyi Huang

CSIAM Trans. Appl. Math. ›› 2025, Vol. 6 ›› Issue (1) : 1 -30.

PDF (428KB)
CSIAM Trans. Appl. Math. ›› 2025, Vol. 6 ›› Issue (1) : 1 -30. DOI: 10.4208/csiam-am.SO-2023-0024
research-article

A New $\mathcal{L}1$-TFPM Scheme for the Singularly Perturbed Subdiffusion Equations

Author information +
History +
PDF (428KB)

Abstract

Since the memory effect is taken into account, the singularly perturbed subdiffusion equation can better describe the diffusion phenomenon with small diffusion coefficients. However, near the boundary configured with non-smooth boundary values, the solution of the singularly perturbed subdiffusion equation has a boundary layer of thickness $\mathcal{O}\left(\epsilon \right)$, which brings great challenges to the construction of the efficient numerical schemes. By decomposing the Caputo fractional derivative, the singularly perturbed subdiffusion equation is formally transformed into a class of steadystate diffusive-reaction equation. By means of a kind of tailored finite point method (TFPM) scheme for solving steady-state diffusion-reaction equations and the $\mathcal{L}1$ formula for discretizing the Caputo fractional derivative, we construct a new $\mathcal{L}1$-TFPM scheme for solving singularly perturbed subdiffusion equations. Our proposed numerical scheme satisfies the discrete extremum principle and is unconditionally numerically stable. Besides, we prove that the new TFPM scheme can obtain reliable numerical solutions as $h\ll \epsilon $ and $\epsilon \ll h$. However, there will be a large error loss due to the resonance effect as $h\sim \epsilon $. Numerical experimental results can demonstrate the validity of the numerical scheme.

Keywords

Singularly perturbed subdiffusion equations / semi-discrete TFPM scheme / $\mathcal{L}1-$ TFPM scheme / discrete extremum principle

Cite this article

Download citation ▾
Wang Kong, Zhongyi Huang. A New $\mathcal{L}1$-TFPM Scheme for the Singularly Perturbed Subdiffusion Equations. CSIAM Trans. Appl. Math., 2025, 6(1): 1-30 DOI:10.4208/csiam-am.SO-2023-0024

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Brunner, H. Han, and D. Yin, The maximum principle for time-fractional diffusion equations and its application, Numer. Funct. Anal. Optim., 36(10):1307-1321, 2015.

[2]

H. Chen, Y. Shi, J. Zhang, and Y. Zhao, Sharp error estimate of a Grünwald-Letnikov scheme for reaction-subdiffusion equations, Numer. Algorithms, 89:1465-1477, 2022.

[3]

L.J. Chen, M. Li, and Q. Xu, Sinc-Galerkin method for solving the time fractional convectiondiffusion equation with variable coefficients, Adv. Differential Equations, 2020(1):504, 2020.

[4]

S. Das, R. Kumar, and P. K. Gupta, The homotopy analysis method for fractional Cauchy reactiondiffusion problems, Int. J. Chem. React., 9(1):1542-6580, 2011.

[5]

A. El-Kahlout, T. O. Salim, and S. El-Azab, Exact solution of time fractional partial differential equation, Appl. Math. Sci., 2(52):2577-2590, 2008.

[6]

H. Han and Z. Huang, The tailored finite point method, Comput. Methods Appl. Math., 14(3):321-345, 2014.

[7]

H. Han, Z. Huang, and R. B. Kellogg, A tailored finite point method for a singular perturbation problem on an unbounded domain, J. Sci. Comput., 36(2):243-261, 2008.

[8]

F. Huang and F. Liu, The time fractional diffusion equation and the advection-dispersion equation, ANZIAM J., 46(3):317-330, 2005.

[9]

J. Jia and H. Wang, A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes, Comput. Math. Appl., 78(5):1345-1356, 2019.

[10]

B. Jin, R. Lazarov, and Z. Zhou, An analysis of the L 1 scheme for the subdiffusion equation with nonsmooth data, IMA J. Numer. Anal., 36(1):197-221, 2016.

[11]

V. Keyantuo, C. Lizama, and M. Warma, Existence, regularity and representation of solutions of time fractional diffusion equations, Adv. Differential Equations, 21(9/10):837-886, 2016.

[12]

W. Kong and Z. Huang, The asymptotic analysis for the singularly perturbed subdiffusion equations on bounded domain, Adv. Appl. Math. Mech. (To appear)

[13]

B. Li and S. Ma, Exponential convolution quadrature for nonlinear subdiffusion equations with nonsmooth initial data, SIAM J. Numer. Anal., 60(2):503-528, 2022.

[14]

H. Liao, D. Li, and J. Zhang, Sharp error estimate of the nonuniform L 1 formula for linear reactionsubdiffusion equations, SIAM J. Numer. Anal., 56(2):1112-1133, 2018.

[15]

Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351(1):218-223, 2009.

[16]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Status Solidi (B), 133(1):425-430, 1986.

[17]

P. Roul and V. Rohil, A novel high-order numerical scheme and its analysis for the two-dimensional time-fractional reaction-subdiffusion equation, Numer. Algorithms, 90(4):1357-1387, 2022.

[18]

S. K. Sahoo and V. Gupta, A robust uniformly convergent finite difference scheme for the timefractional singularly perturbed convection-diffusion problem, Comput. Math. Appl., 137:126-146, 2023.

[19]

M. Stynes, E. O'Riordan, and J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55(2):1057-1079, 2017.

[20]

Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56(2):193-209, 2006.

[21]

Y. Wang and J. Cao, A tailored finite point method for subdiffusion equation with anisotropic and discontinuous diffusivity, Appl. Math. Comput., 401:125907, 2021.

[22]

Y. Wang, J. Cao, and J. Fu, Tailored finite point method for time fractional convection dominated diffusion problems with boundary layers, Math. Methods Appl. Sci., 47(13):11044-11061, 2020.

[23]

F. Zeng, C. Li, F. Liu, and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35(6):A2976-A3000, 2013.

[24]

F. Zeng, C. Li, F. Liu, and I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput., 37(1):A55-A78, 2015.

AI Summary AI Mindmap
PDF (428KB)

212

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/