Global Solvability and Decay Properties for a p-Laplacian Diffusive Keller-Segel Model

Yi Lu , Chunhua Jin

CSIAM Trans. Appl. Math. ›› 2024, Vol. 5 ›› Issue (4) : 671 -711.

PDF (60KB)
CSIAM Trans. Appl. Math. ›› 2024, Vol. 5 ›› Issue (4) : 671 -711. DOI: 10.4208/csiam-am.SO-2022-0038
research-article

Global Solvability and Decay Properties for a p-Laplacian Diffusive Keller-Segel Model

Author information +
History +
PDF (60KB)

Abstract

In this paper, we consider the global well-posedness of solutions to a para-bolic-parabolic Keller-Segel model with p-Laplace diffusion. We first establish a critical exponent p*=3N/(N+1) and prove that when p>p*, the solution exists globally for arbitrary large initial value. When 1<p≤p*, there exists a uniformly bounded global strong solution for small initial value, and the solution decays to zero as t→∞. This paper improves and expands the results of [Cong and Liu, Kinet. Relat. Models, 9(4), 2016], in which the parabolic-elliptic case is studied.

Keywords

Keller-Segel model / p-Laplacian / strong solution / boundedness / decay rate

Cite this article

Download citation ▾
Yi Lu, Chunhua Jin. Global Solvability and Decay Properties for a p-Laplacian Diffusive Keller-Segel Model. CSIAM Trans. Appl. Math., 2024, 5(4): 671-711 DOI:10.4208/csiam-am.SO-2022-0038

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF (60KB)

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/