Pricing Stocks with Trading Volumes

Ben Duan , Yutian Li , Dawei Lu , Yang Lu , Ran Zhang

CSIAM Trans. Appl. Math. ›› 2024, Vol. 5 ›› Issue (1) : 1 -17.

PDF (954KB)
CSIAM Trans. Appl. Math. ›› 2024, Vol. 5 ›› Issue (1) : 1 -17. DOI: 10.4208/csiam-am.SO-2022-0030
research-article

Pricing Stocks with Trading Volumes

Author information +
History +
PDF (954KB)

Abstract

The present paper proposes a new framework for describing the stock price dynamics. In the traditional geometric Brownian motion model and its variants, volatility plays a vital role. The modern studies of asset pricing expand around volatility, trying to improve the understanding of it and remove the gap between the theory and market data. Unlike this, we propose to replace volatility with trading volume in stock pricing models. This pricing strategy is based on two hypotheses: A pricevolume relation with an idea borrowed from fluid flows and a white-noise hypothesis for the price rate of change (ROC) that is verified via statistic testing on actual market data. The new framework can be easily adopted to local volume and stochastic volume models for the option pricing problem, which will point out a new possible direction for this central problem in quantitative finance.

Keywords

Asset pricing / volatility / trading volume / stock price model / white noise

Cite this article

Download citation ▾
Ben Duan, Yutian Li, Dawei Lu, Yang Lu, Ran Zhang. Pricing Stocks with Trading Volumes. CSIAM Trans. Appl. Math., 2024, 5(1): 1-17 DOI:10.4208/csiam-am.SO-2022-0030

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. G. Andersen, Return volatility and trading volume: An information flow interpretation of stochastic volatility, J. Finance, 51(1):169-204, 1996.

[2]

L. Bachelier, Théorie de la spéculation, Annales Scientifiques de l'École Normale Supérieure, 3(17):21-86, 1900.

[3]

H. Bessembinder and P. J. Seguin, Price volatility, trading volume, and market depth: Evidence from futures markets, J. Financial Quant. Anal., 28(1):21-39, 1993.

[4]

F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81(3):637654, 1973.

[5]

G. E. P. Box and D. A. Pierce, Distribution of residual autocorrelations in autoregressive-integrated moving average time series models, J. Amer. Statist. Assoc., 65:1509-1526, 1970.

[6]

R. H. Chan, Y. Z. Guo, S. T. Lee, and X. Li, Financial Mathematics, Derivatives and Structured Products, Springer, 2019.

[7]

B. Dupire, Pricing with a smile, Risk, 7(1):18-20, 1994.

[8]

J. Durbin, Distribution Theory for Tests Based on the Sample Distribution Function, SIAM, 1973.

[9]

E. F. Fama, The behavior of stock-market prices, The Journal of Business, 38:34-105, 1965.

[10]

C. W. J. Granger and O. Morgenstern, Spectral analysis of New York stock market prices, Kyklos, 16(1):1-27, 1963.

[11]

S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6:327-343, 1993.

[12]

J. Hull, Options, Futures, and Other Derivatives, Pearson, 2022.

[13]

C. M. Jones, G. Kaul, and M. L. Lipson, Transactions, Rev. Financ. volume, and volatility, Stud., 7:631-651, 1994.

[14]

B. B. Mandelbrot, The variation of certain speculative prices, The Journal of Business, 36:394419, 1963.

[15]

R. Merton, Bell J. Econ. Theory of rational option pricing, Manage. Sci., 4:141-183, 1973.

[16]

P. Samuelson, Rational theory of warrant pricing, Ind. Manage. Rev., 6(2):13-32, 1965.

[17]

S. S. Shapiro and M. B. Wilk, An analysis of variance test for normality (complete samples), Biometrika, 52:591-611, 1965.

[18]

X. E. Xu, P. Chen, and C. Wu, Time and dynamic volume-volatility relation, J. Bank. Financ., 30:1535-1558, 2006.

AI Summary AI Mindmap
PDF (954KB)

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/