Unconditionally Maximum-Principle-Preserving Parametric Integrating Factor Two-Step Runge-Kutta Schemes for Parabolic Sine-Gordon Equations

Hong Zhang , Xu Qian , Jun Xia , Songhe Song

CSIAM Trans. Appl. Math. ›› 2023, Vol. 4 ›› Issue (1) : 177 -224.

PDF (1300KB)
CSIAM Trans. Appl. Math. ›› 2023, Vol. 4 ›› Issue (1) : 177 -224. DOI: 10.4208/csiam-am.SO-2022-0019
research-article

Unconditionally Maximum-Principle-Preserving Parametric Integrating Factor Two-Step Runge-Kutta Schemes for Parabolic Sine-Gordon Equations

Author information +
History +
PDF (1300KB)

Abstract

We present a systematic two-step approach to derive temporal up to the eighth-order, unconditionally maximum-principle-preserving schemes for a semilinear parabolic sine-Gordon equation and its conservative modification. By introducing a stabilization term to an explicit integrating factor approach, and designing suitable approximations to the exponential functions, we propose a unified parametric twostep Runge-Kutta framework to conserve the linear invariant of the original system. To preserve the maximum principle unconditionally, we develop parametric integrating factor two-step Runge-Kutta schemes by enforcing the non-negativeness of the Butcher coefficients and non-decreasing constraint of the abscissas. The order conditions, linear stability, and convergence in the L-norm are analyzed. Theoretical and numerical results demonstrate that the proposed framework, which is explicit and free of limiters, cut-off post-processing, or exponential effects, offers a concise, and effective approach to develop high-order inequality-preserving and linear-invariant-conserving algorithms.

Keywords

Parabolic sine-Gordon equation / linear-invariant-conserving / unconditionally maxi-mum-principle-preserving / parametric two-step Runge-Kutta method

Cite this article

Download citation ▾
Hong Zhang, Xu Qian, Jun Xia, Songhe Song. Unconditionally Maximum-Principle-Preserving Parametric Integrating Factor Two-Step Runge-Kutta Schemes for Parabolic Sine-Gordon Equations. CSIAM Trans. Appl. Math., 2023, 4(1): 177-224 DOI:10.4208/csiam-am.SO-2022-0019

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta metallurgica, 27:1085-1095, 1979.

[2]

M. Bassenne, L. Fu, and A. Mani, Time-accurate and highly-stable explicit operators for stiff differential equations, J. Comput. Phys., 424:109847, 2021.

[3]

S. Blanes, A. Iserles, and S. Macnamara, Positivity-preserving methods for ordinary differential equations, ESAIM Math. Model. Numer. Anal., 56:1843-1870, 2022.

[4]

L. Bonaventura and A. Della Rocca, Unconditionally strong stability preserving extensions of the TR-BDF 2 method, J. Sci. Comput., 70:859-895, 2017.

[5]

H. Burchard, E. Deleersnijder, and A. Meister, A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations, Appl. Numer. Math., 47:1-30, 2003.

[6]

M. Calvo, J. I. Montijano, and L. Rández, A note on the stability of time-accurate and highly-stable explicit operators for stiff differential equations, J. Comput. Phys., 436:110316, 2021.

[7]

A. Chandra, M. Hairer, and H. Shen, The dynamical sine-Gordon model in the full subcritical regime, arXiv:1808.02594, 2018.

[8]

C. Chen, T. Dang, and J. Hong, An adaptive time-stepping full discretization for stochastic AllenCahn equation, arXiv:2108.01909, 2021.

[9]

L. Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations, Comput. Phys. Commun., 108:147-158, 1998.

[10]

J. Cheng and C.-W. Shu, Positivity-preserving Lagrangian scheme for multi-material compressible flow, J. Comput. Phys., 257:143-168, 2014.

[11]

X. Cheng, D.Li, C. Quan, and W. Yang, On a parabolic Sine-Gordon model, Numer. Math. Theor. Meth. Appl., 14:1068-1084, 2021.

[12]

K. Chow and S. J. Ruuth, Linearly stabilized schemes for the time integration of stiff nonlinear PDEs, J. Sci. Comput., 87:1-29, 2021.

[13]

J. M. Church, Z. Guo, P. K. Jimack, A. Madzvamuse, K. Promislow, B. Wetton, S. M. Wise, and F. Yang, High accuracy benchmark problems for Allen-Cahn and Cahn-Hilliard dynamics, Commun. Comput. Phys., 26:947-972, 2019.

[14]

S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys., 176:430-455, 2002.

[15]

J. Douglas Jr. and T. Dupont, Alternating-direction Galerkin methods on rectangles, Numerical Solution of Partial Differential Equations-II, Academic Press, 133-214, 1971.

[16]

J. Du, E. Chung, and Y. Yang, Maximum-principle-preserving local discontinuous Galerkin methods for Allen-Cahn equations, Commun. Appl. Math. Comput., 4(1):353-379, 2022.

[17]

J. Du and Y. Yang, Third-order conservative sign-preserving and steady-state-preserving time integrations and applications in stiff multispecies and multireaction detonations, J. Comput. Phys., 395:489-510, 2019.

[18]

Q. Du, L. Ju, X. Li, and Z. Qiao, Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation, SIAM J. Numer. Anal., 57:875-898, 2019.

[19]

Q. Du, L. Ju, X. Li, and Z. Qiao, Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes, SIAM Rev., 63:317-359, 2021.

[20]

Q. Du, L. Ju, and J. Lu, Analysis of fully discrete approximations for dissipative systems and application to time-dependent nonlocal diffusion problems, J. Sci. Comput., 78:1438-1466, 2019.

[21]

Q. Du and W. Zhu, Analysis and applications of the exponential time differencing schemes and their contour integration modifications, BIT Numer. Math., 45:307-328, 2005.

[22]

D. J. Eyre, An unconditionally stable one-step scheme for gradient systems, Unpublished article, 1998.

[23]

J. Frenkel and T. Kontorova, On the theory of plastic deformation and twinning, Izv. Akademii Nauk. SSSR, Ser. Fiz., 1:137-149, 1939.

[24]

Y. Gong, Q. Hong, and Q. Wang, Supplementary variable method for thermodynamically consistent partial differential equations, Comput. Methods Appl. Mech. Eng., 381:113746, 2021.

[25]

Y. Gong, Q. Wang, Y. Wang, and J. Cai, A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation, J. Comput. Phys., 328:354-370, 2017.

[26]

Y. Gong, J. Zhao, and Q. Wang, Arbitrarily high-order linear energy stable schemes for gradient flow models, J. Comput. Phys., 419:109610, 2020.

[27]

S. Gottlieb, Z. Grant, and L. Isherwood, Optimized strong stability preserving integrating factor two-step Runge-Kutta methods, https://github.com/SSPmethods/SSPIF-TSRK-methods.

[28]

S. Gottlieb, Z. J. Grant, J. Hu, and R. Shu, High order unconditionally strong stability preserving multi-derivative implicit and IMEX Runge-Kutta methods with asymptotic preserving properties, arXiv:2102.11939, 2021.

[29]

S. Gottlieb, D. I. Ketcheson, and C.-W. Shu, Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations, World Scientific, 2011.

[30]

S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43:89-112, 2001.

[31]

M. Hairer and H. Shen, The dynamical sine-Gordon model, Comm. Math. Phys., 341:933-989, 2016.

[32]

S. Ham, Y. Hwang, S. Kwak, and J. Kim, Unconditionally stable second-order accurate scheme for a parabolic sine-Gordon equation, AIP Adv., 12:025203, 2022.

[33]

D. He, K. Pan, and H. Hu, A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation, Appl. Numer. Math., 151:44-63, 2020.

[34]

Y. He, Y. Liu, and T. Tang, On large time-stepping methods for the Cahn-Hilliard equation, Appl. Numer. Math., 57:616-628, 2007.

[35]

Q. Hong, Y. Gong, J. Zhao, and Q. Wang, Arbitrarily high order structure-preserving algorithms for the Allen-Cahn model with a nonlocal constraint, Appl. Numer. Math., 170:321-339, 2021.

[36]

C. Huang, Strong stability preserving hybrid methods, Appl. Numer. Math., 59:891-904, 2009.

[37]

J. Huang, T. Izgin, S. Kopecz, A. Meister, and C.-W. Shu, On the stability of strong-stabilitypreserving modified Patankar Runge-Kutta schemes, arXiv:2205.01488, 2022.

[38]

J. Huang and C.-W. Shu, Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms, J. Comput. Phys., 361:111135, 2018.

[39]

W. Hundsdorfer and S. J. Ruuth, On monotonicity and boundedness properties of linear multistep methods, Math. Comp., 75:655-672, 2006.

[40]

L. Isherwood, Z. J. Grant, and S. Gottlieb, Strong stability preserving integrating factor two-step Runge-Kutta methods, J. Sci. Comput., 81:1446-1471, 2019.

[41]

T. Izgin, S. Kopecz, and A. Meister, On the stability of unconditionally positive and linear invariants preserving time integration schemes, arXiv:2202.11649, 2022.

[42]

Z. Jackiewicz, General Linear Methods for Ordinary Differential Equations, John Wiley & Sons, 2009.

[43]

Z. Jackiewicz and S. Tracogna, A general class of two-step Runge-Kutta methods for ordinary differential equations, SIAM J. Numer. Anal., 32:1390-1427, 1995.

[44]

K. Jiang, L. Ju, J. Li, and X. Li, Unconditionally stable exponential time differencing schemes for the mass-conserving Allen-Cahn equation with nonlocal and local effects, Numer. Methods Partial Differ. Equ., 38:1636-1657, 2022.

[45]

L. Ju, X. Li, and Z. Qiao, Generalized SAV-exponential integrator schemes for Allen-Cahn type gradient flows, SIAM J. Numer. Anal., 60:1905-1931, 2022.

[46]

D. I. Ketcheson, Step sizes for strong stability preservation with downwind-biased operators, SIAM J. Numer. Anal., 49:1649-1660, 2011.

[47]

D. I. Ketcheson, S. Gottlieb, and C. B. Macdonald, Strong stability preserving two-step RungeKutta methods, SIAM J. Numer. Anal., 49:2618-2639, 2011.

[48]

J. F. B. M. Kraaijevanger, Contractivity of Runge-Kutta methods, BIT Numer. Math., 31:482-528, 1991.

[49]

J. D. Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal., 4:372-380, 1967.

[50]

D. Li, Ann. Appl. Effective maximum principles for spectral methods, Math., 37:131-290, 2021.

[51]

D. Li, C. Quan, and J. Xu, Part I: Scalar Allen-Cahn equation, J. Comput. Stability and convergence of strang splitting. Phys., 458:111087, 2022.

[52]

J. Li, L. Ju, Y. Cai, and X. Feng, Unconditionally maximum bound principle preserving linear schemes for the conservative Allen-Cahn equation with nonlocal constraint, J. Sci. Comput., 87:132, 2021.

[53]

J. Li, X. Li, L. Ju, and X. Feng, Stabilized integrating factor Runge-Kutta method and unconditional preservation of maximum bound principle, SIAM J. Sci. Comput., 43:A1780-A 1802, 2021.

[54]

M. Li, F. Li, Z. Li, and L. Xu, Maximum-principle-satisfying and positivity-preserving high order central discontinuous Galerkin methods for hyperbolic conservation laws, SIAM J. Sci. Comput., 38:A3720-A3740, 2016.

[55]

H.-L. Liao, T. Tang, and T. Zhou, On energy stable, maximum-principle preserving, second-order BDF scheme with variable steps for the Allen-Cahn equation, SIAM J. Numer. Anal., 58:2294-2314, 2020.

[56]

B. Neudecker, Critical dynamics of the sine-Gordon model in $d=2-\epsilon $ dimensions, Zeitschrift für Physik B Condensed Matter, 52:145-149, 1983.

[57]

M. Okumura, A stable and structure-preserving scheme for a non-local Allen-Cahn equation, Jpn. J. Ind. Appl. Math., 35:1245-1281, 2018.

[58]

J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48:249-264, 1992.

[59]

J. Shen, T. Tang, and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer, Vol. 41, 2011.

[60]

J. Shen, J. Xu, and J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61:474-506, 2019.

[61]

J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 28:1669-1691, 2010.

[62]

P. Smereka, Semi-implicit level set methods for curvature and surface diffusion motion, J. Sci. Comput., 19:439-456, 2003.

[63]

L. Tang, J. Guo, and S. Song, Bound-preserving weighted compact nonlinear schemes for scalar conservation laws with stiff source terms, Math. Numer. Sin., 43:241-252, 2021.

[64]

T. Tang, Spectral and High-Order Methods with Applications, Science Press Beijing, 2006.

[65]

T. Tang and J. Yang, Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle, J. Comput. Math., 34:471-481, 2016.

[66]

J. J. van der Vegt, Y. Xia, and Y. Xu, Positivity preserving limiters for time-implicit higher order accurate discontinuous Galerkin discretizations, SIAM J. Sci. Comput., 41:A2037-A 2063, 2019.

[67]

X. Wang, J. Kou, and J. Cai, Stabilized energy factorization approach for Allen-Cahn equation with logarithmic Flory-Huggins potential, J. Sci. Comput., 82:1-23, 2020.

[68]

X. Wang, J. Kou, and H. Gao, Linear energy stable and maximum principle preserving semi-implicit scheme for Allen-Cahn equation with double well potential, Commun. Nonlinear Sci. Numer. Simul., 98:105766, 2021.

[69]

C. Xu and T. Tang, Stability analysis of large time-stepping methods for epitaxial growth models, SIAM J. Numer. Anal., 44:1759-1779, 2006.

[70]

J. Xu, Y. Li, S. Wu, and A. Bousquet, On the stability and accuracy of partially and fully implicit schemes for phase field modeling, Comput. Methods Appl. Mech. Engrg., 345:826-853, 2019.

[71]

J. Yang, Q. Du, and W. Zhang, Uniform lp-bound of the Allen-Cahn equation and its numerical discretization, Int. J. Numer. Anal. Mod., 15:213-227, 2018.

[72]

R. Yang, Y. Yang, and Y. Xing, High order sign-preserving and well-balanced exponential RungeKutta discontinuous Galerkin methods for the shallow water equations with friction, J. Comput. Phys., 444:110543, 2021.

[73]

X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends, J. Comput. Phys., 327:294-316, 2016.

[74]

H. Zhang, Repository to verify the order conditions of pTSRK, https://github.com/auseraccount/pTSRK,2022.

[75]

H. Zhang, J. Yan, X. Qian, X. Chen, and S. Song, Explicit third-order unconditionally structurepreserving schemes for conservative Allen-Cahn equations, J. Sci. Comput., 90:1-29, 2022.

[76]

H. Zhang, J. Yan, X. Qian, and S. Song, Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge-Kutta schemes for Allen-Cahn equation, Appl. Numer. Math., 161:372-390, 2021.

[77]

H. Zhang, J. Yan, X. Qian, and S. Song, Up to fourth-order unconditionally structure-preserving parametric single-step methods for semilinear parabolic equations, Comput. Methods Appl. Mech. Engrg., 393:114817, 2022.

[78]

X. Zhang and C.-W. Shu, Positivity-preserving high order finite difference WENO schemes for compressible Euler equations, J. Comput. Phys., 231:2245-2258, 2012.

AI Summary AI Mindmap
PDF (1300KB)

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/