Radial Transonic Shock Solutions to Euler-Poisson System with Varying Background Charge in an Annulus

Ben Duan , Zhen Luo , Yuanyuan Xing

CSIAM Trans. Appl. Math. ›› 2023, Vol. 4 ›› Issue (1) : 129 -156.

PDF (211KB)
CSIAM Trans. Appl. Math. ›› 2023, Vol. 4 ›› Issue (1) : 129 -156. DOI: 10.4208/csiam-am.SO-2022-0007
research-article

Radial Transonic Shock Solutions to Euler-Poisson System with Varying Background Charge in an Annulus

Author information +
History +
PDF (211KB)

Abstract

This paper concerns both the structural and dynamical stabilities of radially symmetric transonic shock solutions for two-dimensional Euler-Poisson system in an annulus. The density of fixed, positively charged background ions is allowed to be different constants in supersonic and subsonic regimes. First, the existence and structural stability of a steady transonic shock solution are obtained by the monotonicity between the shock location and the density on the outer circle. Second, any radially symmetric transonic shock solution with respect to small perturbations of the initial data is shown to be dynamically stable. The proof relies on the decay estimates and coupled effects from electric field and geometry of the annulus, together with the methods from [18]. These results generalize previous stability results on transonic shock solutions for constant background charge.

Keywords

Euler-Poisson equations / radial symmetry / transonic shock / varying background charge / stability

Cite this article

Download citation ▾
Ben Duan, Zhen Luo, Yuanyuan Xing. Radial Transonic Shock Solutions to Euler-Poisson System with Varying Background Charge in an Annulus. CSIAM Trans. Appl. Math., 2023, 4(1): 129-156 DOI:10.4208/csiam-am.SO-2022-0007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

U. M. Ascher, P. A. Markowich, P. Pietra, and C. Schmeiser, A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Models Methods Appl. Sci., 1:347376, 1991.

[2]

M. Bae, B. Duan, J. J. Xiao, and C. J. Xie, Structural stability of supersonic solutions to the EulerPoisson system, Arch. Ration. Mech. Anal., 239:679-731, 2021.

[3]

M. Bae, B. Duan, and C. J. Xie, Subsonic solutions for steady Euler-Poisson system in twodimensional nozzles, SIAM J. Math. Anal., 46:3455-3480, 2014.

[4]

M. Bae and Y. Park, Radial transonic shock solutions of Euler-Poisson system in convergent nozzles, Discrete Contin. Dyn. Syst. Ser. S, 11:773-791, 2018.

[5]

M. Bae and S. K. Weng,3-D axisymmetric subsonic flows with nonzero swirl for the compressible Euler-Poisson system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35:161-186, 2018.

[6]

G. Q. Chen and B. X. Fang, Stability of transonic shocks in steady supersonic flow past multidimensional wedges, Adv. Math. (N. Y.), 314:493-539, 2017.

[7]

G. Q. Chen and M. Feldman, Existence and stability of multidimensional transonic flows through an infinite nozzle of arbitrary cross-sections, Arch. Ration. Mech. Anal., 184:185-242, 2007.

[8]

S. X. Chen, Transonic shocks in 3-D compressible flow passing a duct with a general section for Euler systems, Trans. Amer. Math. Soc., 360:5265-5289, 2008.

[9]

S. X. Chen, Compressible flow and transonic shock in a diverging nozzle, Comm. Math. Phys., 289:75-106, 2009.

[10]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers Inc., 1948.

[11]

L. L. Du, C. J. Xie, and Z. P. Xin, Steady subsonic ideal flows through an infinitely long nozzle with large vorticity, Comm. Math. Phys., 328:327-354, 2014.

[12]

B. Duan, Z. Luo, and J. J. Xiao, Transonic shock solutions to the Euler-Poisson system in quasi-one-dimensional nozzles, Commun. Math. Sci., 14:1023-1047, 2016.

[13]

I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Comm. Partial Differential Equations, 17:553-577, 1992.

[14]

J. Li, Z. P. Xin, and H. C. Yin, On transonic shocks in a nozzle with variable end pressures, Comm. Math. Phys., 291:111-150, 2009.

[15]

T. T. Li and W. C. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke Univeisity Mathematics Series. V. Duke University, Mathematics Department, 1985.

[16]

T. P. Liu, Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys., 83:243-260, 1982.

[17]

T. P. Liu, Transonic gas flow in a duct of varying area, Arch. Ration. Mech. Anal., 80:1-18, 1982.

[18]

T. Luo, J. Rauch, C. J. Xie, and Z. P. Xin, Stability of transonic shock solutions for one-dimensional Euler-Poisson equations, Arch. Ration. Mech. Anal., 202:787-827, 2011.

[19]

T. Luo and Z. P. Xin, Transonic shock solutions for a system of Euler-Poisson equations, Commun. Math. Sci., 10:419-462, 2012.

[20]

A. Majda, The existence of multidimensional shock fronts, Mem. Amer. Math. Soc., 41:1-95, 1983.

[21]

P. A. Markowich, Z. Angew. On steady state Euler-Poisson models for semiconductors, Math. Phys. 42:389-407, 1991.

[22]

P. A. Markowich, C. A. Ringhofer, and C. Schmeiser, Semiconductor Equations, Springer, 1990.

[23]

G. Métivier, Stability of multidimensional shocks, in:Advances in the Theory of Shock Waves, Progress in Nonlinear Differential Equations and Their Applications, H. Freistühler, A. Szepessy (Eds), Birkhäuser, 47:25-103, 2001.

[24]

J. Rauch, Qualitative behavior of dissipative wave equations on bounded domain, Arch. Ration. Mech. Anal., 62:77-85, 1976.

[25]

J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc., 189:303-318, 1974.

[26]

J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., 24:79-86, 1974.

[27]

J. Rauch, C. J. Xie, and Z. P. Xin, Global stability of transonic shock solutions in quasi-onedimensional nozzles, J. Math. Pures Appl., 99:395-408, 2010.

[28]

C. P. Wang and Z. P. Xin, Smooth transonic flows of meyer type in de Laval nozzles, Arch. Ration. Mech. Anal., 232:1597-1647, 2019.

[29]

S. K. Weng, C. J. Xie, and Z. P. Xin, Structural stability of the transonic shock problem in a divergent three-dimensional axisymmetric perturbed nozzle, SIAM J. Math. Anal., 53:279-308, 2021.

[30]

C. J. Xie and Z. P. Xin, Existence of global steady subsonic Euler flows through infinitely long nozzles, SIAM J. Math. Anal., 42:751-784, 2010.

[31]

Z. P. Xin, W. Yan, and H. C. Yin, Transonic shock problem for the Euler system in a nozzle, Arch. Ration. Mech. Anal., 194:1-47, 2009.

[32]

Z. P. Xin and H. C. Yin, The transonic shock in a nozzle, 2-D and 3-D complete Euler systems, J. Differential Equations, 245:1014-1085, 2008.

[33]

H. R. Yuan, A remark on determination of transonic shocks in divergent nozzles for steady compressible Euler flows, Nonlinear Anal. Real World Appl., 9:316-325, 2008.

AI Summary AI Mindmap
PDF (211KB)

47

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/