A Splitting Hamiltonian Monte Carlo Method for Efficient Sampling
Lei Li , Lin Liu , Yuzhou Peng
CSIAM Trans. Appl. Math. ›› 2023, Vol. 4 ›› Issue (1) : 41 -73.
A Splitting Hamiltonian Monte Carlo Method for Efficient Sampling
We propose a splitting Hamiltonian Monte Carlo (SHMC) algorithm, which can be computationally efficient when combined with the random mini-batch strategy. By splitting the potential energy into numerically nonstiff and stiff parts, one makes a proposal using the nonstiff part of U, followed by a Metropolis rejection step using the stiff part that is often easy to compute. The splitting allows efficient sampling from systems with singular potentials (or distributions with degenerate points) and/or with multiple potential barriers. In our SHMC algorithm, the proposal only based on the nonstiff part in the splitting is generated by the Hamiltonian dynamics, which can be potentially more efficient than the overdamped Langevin dynamics. We also use random batch strategies to reduce the computational cost to
Markov chain Monte Carlo / potential splitting / random-batch method / many body systems / Bayesian inference
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
L. Lovász and M. Random walks in a convex body and an improved volume algorithm, Random Struct. Algorithms, 4(4):359-412, 1993. |
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
/
| 〈 |
|
〉 |