Adaptive H(div)- Conforming Embedded-Hybridized Discontinuous Galerkin Finite Element Methods for the Stokes Problems

Yihui Han , Haitao Leng

CSIAM Trans. Appl. Math. ›› 2022, Vol. 3 ›› Issue (1) : 82 -108.

PDF (9909KB)
CSIAM Trans. Appl. Math. ›› 2022, Vol. 3 ›› Issue (1) : 82 -108. DOI: 10.4208/csiam-am.SO-2021-0023
research-article

Adaptive H(div)- Conforming Embedded-Hybridized Discontinuous Galerkin Finite Element Methods for the Stokes Problems

Author information +
History +
PDF (9909KB)

Abstract

In this paper, we propose a residual-based a posteriori error estimator of embedded-hybridized discontinuous Galerkin finite element methods for the Stokes problems in two and three dimensions. The piecewise polynomials of degree k(k≥1)k(k≥1) and k−1k−1 are used to approximate the velocity and pressure in the interior of elements, and the piecewise polynomials of degree kk are utilized to approximate the velocity and pressure on the inter-element boundaries. The attractive properties, named divergence-free and HH(div)-conforming, are satisfied by the approximate velocity field. We prove that the a posteriori error estimator is robust in the sense that the ratio of the upper and lower bounds is independent of the mesh size and the viscosity. Finally, we provide several numerical examples to verify the theoretical results.

Keywords

Stokes equations / HDG methods / E-HDG methods / a posteriori error estimator / divergence-free / HH(div)-conforming

Cite this article

Download citation ▾
Yihui Han, Haitao Leng. Adaptive H(div)- Conforming Embedded-Hybridized Discontinuous Galerkin Finite Element Methods for the Stokes Problems. CSIAM Trans. Appl. Math., 2022, 3(1): 82-108 DOI:10.4208/csiam-am.SO-2021-0023

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R.A. Adams and J. J.F. Fournier. Sobolev Spaces, volume 140. Academic Press, 2003.

[2]

M. Ainsworth and G. Fu. Fully computable a posteriori error bounds for hybridizable discontinuous Galerkin finite element approximations. Journal of Scientific Computing, 77(1):443-466, 2018.

[3]

R. Araya, M. Solano, and P. Vega. Analysis of an adaptive HDG method for the Brinkman problem. IMA Journal of Numerical Analysis, 39(3):1502-1528, 2019.

[4]

D. Boffi, F. Brezzi, and M. Fortin. Mixed Finite Element Methods and Applications, volume 44. Springer, 2013.

[5]

S. Brenner and R. Scott. The Mathematical Theory of Finite Element Methods, volume 15. Springer Science & Business Media, 2007.

[6]

Z. Cai, C. He, and S. Zhang. Discontinuous finite element methods for interface problems: Robust a priori and a posteriori error estimates. SIAM Journal on Numerical Analysis, 55(1):400-418, 2017.

[7]

C. Carstensen, P. Causin, and R. Sacco. A posteriori dual-mixed adaptive finite element error control for lamé and Stokes equations. Numerische Mathematik, 101(2):309-332, 2005.

[8]

C. Carstensen and S. A. Funken. A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems. Mathematics of Computation, 70(236):1353-1381, 2001.

[9]

C. Carstensen, R. H.W. Hoppe, N. Sharma, and T.Warburton. Adaptive hybridized interior penalty discontinuous Galerkin methods for H(curl)-elliptic problems. NumericalMathemat-ics Theory Methods & Applications, 4(001):13-37, 2011.

[10]

A. Cesmelioglu, S. Rhebergen, and G. N. Wells. An embedded-hybridized discontinuous Galerkin method for the coupled Stokes-Darcy system. Journal of Computational and Applied Mathematics, 367:112476, 2020.

[11]

G. Chen, G. Fu, J. R. Singler, and Y. Zhang. A class of embedded DG methods for Dirichlet boundary control of convection diffusion PDEs. Journal of Scientific Computing, 81:623-648, 2019.

[12]

H. Chen, J. Li, and W. Qiu. Robust a posteriori error estimates for HDG method for convection-diffusion equations. IMA Journal of Numerical Analysis, 36(1):437-462, 2015.

[13]

H. Chen, W. Qiu, and K. Shi. A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations. Computer Methods in Applied Mechanics and Engineering, 333:287-310, 2018.

[14]

B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM Journal on Numerical Analysis, 47(2):1319-1365, 2009.

[15]

B. Cockburn, J. Gopalakrishnan, N.C. Nguyen, J. Peraire, and F. J. Sayas. Analysis of HDG methods for Stokes flow. Mathematics of Computation, 80(274):723-760, 2011.

[16]

B. Cockburn, J. Guzm´an, S.C. Soon, and H. K. Stolarski. An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems. SIAM Journal on Numerical Analysis, 47(4):2686-2707, 2009.

[17]

B. Cockburn and F-J. Sayas. Divergence-conforming HDG methods for Stokes flows. Math-ematics of Computation, 83(288):1571-1598, 2014.

[18]

B. Cockburn andW. Zhang. A posteriori error estimates for HDG methods. Journal of Scien-tific Computing, 51(3):582-607, 2012.

[19]

B. Cockburn and W. Zhang. A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM Journal on Numerical Analysis, 51(1):676-693, 2013.

[20]

H. Dong, B.Wang, Z. Xie, and L.L.Wang. An unfitted hybridizable discontinuous Galerkin method for the Poisson interface problem and its error analysis. IMA Journal of Numerical Analysis, 37(1):444-476, 2018.

[21]

G. Fu, Y. Jin, andW.Qiu. Parameter-free superconvergentH(div)-conformingHDGmethods for the Brinkman equations. IMA Journal of Numerical Analysis, (2):2, 2018.

[22]

G. Fu and C-W. Shu. Analysis of an embedded discontinuous Galerkin method with implicit-explicit time-marching for convection-diffusion problems. International Journal of Numerical Analysis & Modeling, 14(4):477-499, 2017.

[23]

G. N. Gatica, L. F. Gatica, and A. Márquez. Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numerische Mathematik, 126(4):635-677, 2014.

[24]

G. N. Gatica and F. A. Sequeira. Analysis of the HDG method for the Stokes-Darcy coupling. Numerical Methods for Partial Differential Equations, 33(3):885-917, 2017.

[25]

V. Girault and P. A. Raviart. Finite Element Approximation of the Navier-Stokes Equations. Springer-Verlag, Berlin, 1979.

[26]

S. G¨uzey, B. Cockburn, and H.K. Stolarski. The embedded discontinuous Galerkin method: application to linear shell problems. International Journal for Numerical Methods in Engineering, 70(7):757-790, 2007.

[27]

Y. Han, H. Chen, X. Wang, and X. Xie. EXtended HDG methods for second order elliptic interface problems. Journal of Scientific Computing, 84(1):22, 2020.

[28]

Y. Han, X. Wang, and X. Xie. An interface/boundary-unfitted eXtended HDG method for linear elasticity problems. arXiv preprint arXiv:2004. 06275, 2020.

[29]

A. Hannukainen, R. Stenberg, and M. Vohralík. A unified framework for a posteriori error estimation for the Stokes problem. Numerische Mathematik, 122(4):725-769, 2012.

[30]

E.Herbert andW. Christian. hp analysis of a hybrid DGmethod for Stokes flow. IMA Journal of Numerical Analysis, (2):687-721, 2013.

[31]

P. Houston, D. Schötzau, and T. P. Wihler. Hp-adaptive discontinuous Galerkin finite element methods for the Stokes problem. In European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS, 2004.

[32]

P. Houston and T. P.Schötzau, D.and Wihler. Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem. Journal of Scientific Computing, 22-23(1-3):347-370, 2005.

[33]

L.N.T. Huynh, N.C. Nguyen, J. Peraire, and B.C. Khoo. A high-order hybridizable discontinuous Galerkin method for elliptic interface problems. International Journal for Numerical Methods in Engineering, 93(2):183-200, 2013.

[34]

O. A. Karakashian and P. Frédéric. A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM Journal on Numerical Analysis, 41(6):2374-2399, 2003.

[35]

P. L. Lederer and S. Rhebergen. A pressure-robust embedded discontinuous Galerkin method for the Stokes problem by reconstruction operators. arXiv preprint arXiv:2002. 04951, 2020.

[36]

H. Leng and Y. Chen. Residual-type a posteriori error analysis of HDG methods for Neumann boundary control problems. arXiv preprint arXiv:2004. 09319, 2020.

[37]

B. Li and X. Xie. Analysis of a family of HDG methods for second order elliptic problems. Journal of Computational and Applied Mathematics, 307:37-51, 2016.

[38]

B. Li, X. Xie, and S. Zhang. Analysis of a two-level algorithm for HDG methods for diffusion problems. Communications in Computational Physics, 19(5):1435-1460, 2016.

[39]

N. C. Nguyen, J. Peraire, and B. Cockburn. A class of embedded discontinuous Galerkin methods for computational fluid dynamics. Journal of Computational Physics, 302:674-692, 2015.

[40]

N.C. Nguyen, J. Peraire, and B. Cockburn. A hybridizable discontinuous Galerkin method for Stokes flow. ComputerMethods in AppliedMechanics and Engineering, 199(9):582-597, 2010.

[41]

S. Rhebergen and G. N. Wells. Analysis of a hybridized/interface stabilized finite element method for the Stokes equations. SIAM Journal on Numerical Analysis, 55(4):1982-2003, 2017.

[42]

S. Rhebergen and G. N.Wells. Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations. Journal of Scientific Computing, 77(3):1936-1952, 2018.

[43]

S. Rhebergen and G. N. Wells. An embedded-hybridized discontinuous Galerkin finite element method for the Stokes equations. Computer Methods in Applied Mechanics and Engineer-ing, 358:112619, 2020.

[44]

Z. Shi and M. Wang. Finite Element Methods. Science Press, 2013.

[45]

R. Verf ü rth. A posteriori error estimators for the Stokes equations. Numerische Mathematik, 55(3):309-325, 1989.

[46]

R. Verf ü rth. A posteriori error estimators for convection-diffusion equations. Numerische Mathematik 80(4):641-663, 1998.

[47]

B. Wang and B. C. Khoo. Hybridizable discontinuous Galerkin method (HDG) for Stokes interface flow. Journal of Computational Physics, 247(16):262-278, 2013.

[48]

X. Zhang, X. Xie, and S. Zhang. An optimal embedded discontinuous Galerkin method for second-order elliptic problems. ComputationalMethods in AppliedMathematics, 19(4):849-861, 2019.

AI Summary AI Mindmap
PDF (9909KB)

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/