A Holomorphic Operator Function Approach for the Laplace Eigenvalue Problem Using Discontinuous Galerkin Method

Yingxia Xi , Xia Ji

CSIAM Trans. Appl. Math. ›› 2021, Vol. 2 ›› Issue (4) : 776 -792.

PDF (51KB)
CSIAM Trans. Appl. Math. ›› 2021, Vol. 2 ›› Issue (4) : 776 -792. DOI: 10.4208/csiam-am.SO-2021-0012
research-article

A Holomorphic Operator Function Approach for the Laplace Eigenvalue Problem Using Discontinuous Galerkin Method

Author information +
History +
PDF (51KB)

Abstract

The paper presents a holomorphic operator function approach for the Laplace eigenvalue problem using the discontinuous Galerkin method. We rewrite the problem as the eigenvalue problem of a holomorphic Fredholm operator function of index zero. The convergence for the discontinuous Galerkin method is proved by using the abstract approximation theory for holomorphic operator functions. We employ the spectral indicator method to compute the eigenvalues. Extensive numerical examples are presented to validate the theory.

Keywords

Discontinuous Galerkin method / eigenvalue problem / Fredholm operator

Cite this article

Download citation ▾
Yingxia Xi, Xia Ji. A Holomorphic Operator Function Approach for the Laplace Eigenvalue Problem Using Discontinuous Galerkin Method. CSIAM Trans. Appl. Math., 2021, 2(4): 776-792 DOI:10.4208/csiam-am.SO-2021-0012

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF (51KB)

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/