An Efficient Threshold Dynamics Method for Topology Optimization for Fluids

Huangxin Chen , Haitao Leng , Dong Wang , Xiao-Ping Wang

CSIAM Trans. Appl. Math. ›› 2022, Vol. 3 ›› Issue (1) : 26 -56.

PDF (3584KB)
CSIAM Trans. Appl. Math. ›› 2022, Vol. 3 ›› Issue (1) : 26 -56. DOI: 10.4208/csiam-am.SO-2021-0007
research-article

An Efficient Threshold Dynamics Method for Topology Optimization for Fluids

Author information +
History +
PDF (3584KB)

Abstract

We propose an efficient threshold dynamics method for topology optimization for fluids modeled with the Stokes equation. The proposed algorithm is based on minimization of an objective energy function that consists of the dissipation power in the fluid and the perimeter approximated by nonlocal energy, subject to a fluid volume constraint and the incompressibility condition. We show that the minimization problem can be solved with an iterative scheme in which the Stokes equation is approximated by a Brinkman equation. The indicator functions of the fluid-solid regions are then updated according to simple convolutions followed by a thresholding step. We prove mathematically that the iterative algorithm has the total energy decaying property. The proposed algorithm is simple and easy to implement. Extensive numerical experiments in both two and three dimensions show that the proposed iteration algorithm converges in much fewer iterations and is more efficient than many existing methods. In addition, the numerical results show that the algorithm is very robust and insensitive to the initial guess and the parameters in the model.

Keywords

Topology optimization / Stokes flow / threshold dynamics method / mixed finite-element method

Cite this article

Download citation ▾
Huangxin Chen, Haitao Leng, Dong Wang, Xiao-Ping Wang. An Efficient Threshold Dynamics Method for Topology Optimization for Fluids. CSIAM Trans. Appl. Math., 2022, 3(1): 26-56 DOI:10.4208/csiam-am.SO-2021-0007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[2]

G. Allaire, F. Jouve, and A.M. Toader, Structural optimization using sensitivity analysis and a level-set method, Journal of Computational Physics, 194(1), 363-393, 2004.

[3]

G. Allaire, C. Dapogny, G. Delgado, and G.Michailidis,Multi-phase structural optimization via a level set method, ESAIM: Control, Optimisation and Calculus Of Variations, 20(2), 576-611, 2014.

[4]

G. Allaire, Optimal design for minimum weight and compliance in plane stress using extrernal microstructures, Eur. J. Mech. A/Solids 12, 839-878, 1993.

[5]

G. Allaire and F. Jouve, A level-set method for vibration and multiple loads structural optimization, Computer Methods in Applied Mechanics And Engineering, 194(30-33), 3269-3290, 2005.

[6]

C. S. Andreasen,A. R. Gersborg, and O. Sigmund, Topology optimization of microfluidic mixers, Int. J. Numer. Methods Fluids, 61, 498-513, 2009.

[7]

M. P. Bendsøe. Optimal shape design as a material distribution problem. Structural Optimization, 1(4), 193-202, 1989.

[8]

M. P. Bendsøe and O. Sigmund, Topology Optimization:Theory, Methods and Applications, Springer, 2003.

[9]

T. Borrvall and J. Petersson, Topology optimization of fluids in Stokes flow, Int. J. Numer. Methods Fluids, 41, 77-107, 2003.

[10]

V. J. Challis and J. K. Guest, Level set topology optimization of fluids in Stokes flow, Int. J. Numer. Meth. Engrg., 79, 1284-1308, 2009.

[11]

H. Chen and X. P. Wang, A one-domain approach for modeling and simulation of free fluid over a porous medium, J. Comput. Phys., 259, 650-671, 2014.

[12]

M. Elsey and S. Esedo$\overline{\mathrm{g}}$lu, Threshold dynamics for anisotropic surface energies, Math. Comp., 87, 1721-1756, 2018.

[13]

S. Esedo$\overline{\mathrm{g}}$ lu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions, Comm. Pure Appl. Math., 68, 808-864, 2015.

[14]

S. Esedo$\overline{\mathrm{g}}$lu S. J. Ruuth, and R. Tsai, Threshold dynamics for high order geometric motions, Interfaces and Free Boundaries, 10, 263-282, 2008.

[15]

S. Esedo$ \overline{\mathrm{g}}$lu, Y. H. R. Tsai, Threshold dynamics for the piecewise constant Mumford-Shah functional, J. Comput. Phys., 211, 367-384, 2006.

[16]

L. C. Evans, Convergence of an algorithm for mean curvature motion, Indiana University Mathematics Journal, 42, 533-557, 1993.

[17]

H. Garcke, C.Hecht, M.Hinze, and C. Kahle,Numerical approximation of phase field-based shape and topology optimization for fluids, SIAMJ. Sci. Comput., 37, A1846-A 1871, 2015.

[18]

V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, Heidelberg, New York, 1986.

[19]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984.

[20]

K. Ishii, Optimal rate of convergence of the Bence-Merriman-Osher Algorithm for motion by mean curvature, SIAM J. Math. Anal., 37, 841-866, 2005.

[21]

M. Jacobs,E. Merkurjev, and S. Esedo$ \overline{\mathrm{g}}$lu, Auction dynamics: A volume constrained MBO scheme, J. Comput. Phys., 354, 288-310, 2018.

[22]

N. Jenkins and K.Maute, Level set topology optimization of stationary fluid-structure interaction problems. Structural and Multidisciplinary Optimization, 52(1), 179-195, 2015.

[23]

S. Jiang, D. Wang, and X. P. Wang, An efficient boundary integral scheme for the MBO threshold dynamics method via NUFFT, J. Sci. Comput., 74, 474-490, 2018.

[24]

S. Lu and X. Xu, An efficient diffusion generated motion method for wetting dynamics, submitted, 2021.

[25]

J. Ma, D. Wang, X.P. Wang, and X. Yang, A fast algorithm for geodesic active contours with applications to medical image segmentation. arXiv preprint arXiv:2007. 00525, 2020.

[26]

B. Merriman, J. K. Bence, and S. Osher, Diffusion generated motion by mean curvature, UCLA CAM Report 92-18, 1992.

[27]

A. A. Novotny and J. Soko lowski, Topological Derivatives in Shape Optimization, Springer Science & Business, Media, 2012.

[28]

F. Okkels, L. H. Olesen, and H. Bruus, Application of topology optimization in the design of micro and nanofluidic systems, NSTI-Nanotech, 575-578, 2005.

[29]

F. Okkels, H. Bruus, Scaling behavior of optimally structured catalytic microfluidic reactors, Phys. Rev. E, 75, 1-4, 2007.

[30]

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1), 12-49, 1988.

[31]

B. Osting and D. Wang, A diffusion generated motion for orthogonal matrix-valued fields, Math. Comp., 89, 515-550, 2020.

[32]

B. Osting and D. Wang, Diffusion generated methods for denoising target-valued images, AIMS Inverse Probl. Imag., 14(2), 205-232, 2020.

[33]

G. Pingen and K. Maute, Optimal design for non-Newtonian flows using a topology optimization approach, Comput. Math. Appl., 59, 2340-2350, 2010.

[34]

A. Takezawa,S. Nishiwaki, and M. Kitamura, Shape and topology optimization based on the phase field method and sensitivity analysis, J. Comput. Phys, 229, 2697-2718, 2010.

[35]

S. J. Ruuth, A diffusion-generated approach to multiphase motion, J. Comput. Phys., 145, 166-192, 1998.

[36]

S. J. Ruuth and B. T. R. Wetton, A simple scheme for volume-preserving motion by mean curvature, J. Sci. Comput., 19, 373-384, 2003.

[37]

K. Svanberg, The method of moving asymptotes-a new method for structural optimization, Int. J. Numer. Meth. Engrg., 24, pp. 359-373, 1987.

[38]

Swartz D.and Yip, N.K., Convergence of diffusion generated motion to motion by mean curvature. Communications in Partial Differential Equations, 42(10), 1598-1643, 2017.

[39]

C. H. Villanueva and K. Maute, CutFEM topology optimization of 3D laminar incompressible flow problems, Comput. Methods Appl. Mech. Engrg., 320, 444-473, 2017.

[40]

D.Wang, An efficient iterativemethod for reconstructing surface from point clouds. Journal of Scientific Computing, 87(1), 1-21, 2021.

[41]

D. Wang,S. Jiang, and X.P. Wang, An efficient boundary integral scheme for the threshold dynamics method II: Applications to wetting dynamics. Journal of Scientific Computing, 81(3), 1860-1881, 2019.

[42]

D.Wang, H. Li,X.Wei, and X. P.Wang, An efficient iterative thresholding method for image segmentation, J. Comput. Phys., 350, 657-667, 2017.

[43]

D. Wang and B. Osting, A diffusion generated method for computing Dirichlet partitions, J. Comput. Appl. Math., 351, 302-316, 2019.

[44]

D. Wang and X. P. Wang, The iterative convolution-thresholding method (ICTM) for image segmentation. arXiv preprint arXiv:1904.10917, 2019.

[45]

D. Wang,X. P. Wang, and X. Xu, An improved threshold dynamics method for wetting on rough surfaces, J. Comput. Phys., 392, 291-310, 2019.

[46]

M. Wang, X. Wang, D. Guo, A level set method for structural topology optimization, Computer Methods in Applied Mechanics and Engineering 192, 227-246, 2003.

[47]

N. Wiker,A. Klarbring, and T. Borrvall, Topology optimization of regions of Darcy and Stokes flow, Int. J. Numer. Meth. Engrg., 69, 1374-1404, 2007.

[48]

Y. Xie, G. Steven, A simple evolutionary procedure for structural optimization. Computers & Structures, Dec 3;49(5), 885-896,1993.

[49]

X. Xu,D. Wang, and X. P. Wang, An efficient threshold dynamics method for wetting on rough surfaces, J. Comput. Phys., 330, 510-528, 2017.

[50]

X. Xu, andW. Ying, An adaptive threshold dynamics method for three-dimensional wetting on rough surfaces. Communications in Computational Physics, 29(1), 57-79, 2021.

[51]

T. Yamada, K. Izui,S. Nishiwaki, and A. Takezawa, A topology optimization method based on the level set method incorporating a fictitious interface energy, Comput. Methods Appl. Mech. Engrg., 199, 2876-2891, 2010.

[52]

V. Young et al., 3D andmultiple load case bi-directional evolutionary structural optimization (BESO). Structural Optimization 18. 2-3, 183-192, 1999.

AI Summary AI Mindmap
PDF (3584KB)

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/