Some Exact Results on 4-Cycles: Stability and Supersaturation

Jialin He , Jie Ma , Tianchi Yang

CSIAM Trans. Appl. Math. ›› 2023, Vol. 4 ›› Issue (1) : 74 -128.

PDF (373KB)
CSIAM Trans. Appl. Math. ›› 2023, Vol. 4 ›› Issue (1) : 74 -128. DOI: 10.4208/csiam-am.SO-2021-0006
research-article

Some Exact Results on 4-Cycles: Stability and Supersaturation

Author information +
History +
PDF (373KB)

Abstract

Extremal problems on the 4 -cycle C4 played a heuristic important role in the development of extremal graph theory. A fundamental theorem of Füredi states that the Turán number $\mathrm{e}\mathrm{x}\left({q}^{2}+q+1,{C}_{4}\right)\le (1/2)q(q+1{)}^{2}$ holds for every $q\ge 14$, which matches with the classic construction of Erdős-Rényi-Sós and Brown from finite geometry for prime powers q. Very recently, we obtained the first stability result on Füredi's theorem, by showing that for large even q, every (q2+q+1)-vertex C4-free graph with more than (1/2)q(q+1)2-0.2q edges must be a spanning subgraph of a unique polarity graph [20]. Using new technical ideas in graph theory and finite geometry, we strengthen this by showing that the same conclusion remains true if the number of edges is lowered to (1/2)q(q+1)2-(1/2)q+o(q). Among other applications, this gives an immediate improvement on the upper bound of ex (n,C4) for infinite many integers n. A longstanding conjecture of Erdős and Simonovits states that every n-vertex graph with ex (n,C4)+1 edges contains at least $(1+o(1\left)\right)\sqrt{n}4$-cycles. We proved an exact result and confirmed Erdős-Simonovits conjecture for infinitely many integers n [20]. As the second main result of this paper, we further characterize all extremal graphs for which achieve the $\mathcal{l}$-th least number of copies of C4 for any fixed positive integer $\mathcal{l}$. This can be extended to more general settings and provides enhancements on the understanding of the supersaturation problem of C4.

Keywords

Extremal graph theory / 4-cycles / stability / supersaturation / projective plane

Cite this article

Download citation ▾
Jialin He, Jie Ma, Tianchi Yang. Some Exact Results on 4-Cycles: Stability and Supersaturation. CSIAM Trans. Appl. Math., 2023, 4(1): 74-128 DOI:10.4208/csiam-am.SO-2021-0006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Baer, Null systems in projective space, Bull. Amer. Math. Soc., 51:903-906, 1945.

[2]

R. Baer, Polarities in finite projective planes, Bull. Amer. Math. Soc., 52:77-93, 1946.

[3]

R. C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes II, Proc. Lond. Math. Soc., 83(3):532-562, 2001.

[4]

W. G. Brown, On graphs that do not contain a Thomsen graph, Canad. Math. Bull., 9:281-285, 1966.

[5]

R. H. Bruck and H. J. Ryser, The non-existence of certain finite projective planes, Canad. J. Math., 1:88-93, 1949.

[6]

F. Chung, Open problems of Paul Erdős in graph theory, J. Graph Theory, 25:3-36, 1997.

[7]

S. Dow, An improved bound for extending partial projective planes, Discrete Math., 45:199-207, 1983.

[8]

P. Erdős, On sequences of integers no one of which divides the product of two others and some related problems, Izvestiya Nautshno-Issl. Inst. Mat. i Meh. Tomsk, 2:74-82, 1938.

[9]

P. Erdős,Extremal problems on graphs and hypergraphs, in:Hypergraph Seminar (Proc. First Working Sem., Ohio State Univ., 1972), Lecture Notes in Math., 411: 75-84, 1974.

[10]

P. Erdős, Problems and results in combinatorial analysis and graph theory, Discrete Math., 72:8192, 1988.

[11]

P. Erdős, Some of my favourite unsolved problems, in: A Tribute to Paul Erdős, Cambridge University Press, 467-478, 1990.

[12]

P. Erdős, A. Rényi, and V. T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar., 1:215-235, 1966.

[13]

P. Erdős and M. Simonovits, Cube-supersaturated graphs and related problems, in: Progress in Graph Theory ( 1982), Academic Press, 203-218, 1984.

[14]

F. A. Firke, P. M. Kosek, E. D. Nash and J. Williford, Extremal graphs without 4-cycles, J. Combin. Theory Ser. B, 103:327-336, 2013.

[15]

Z. Füredi, Graphs without quadrilaterals, J. Combin. Theory Ser. B, 34:187-190, 1983.

[16]

Z. Füredi, Quadrilateral-free graphs with maximum number of edges, preprint 1988, http://www.math.uiuc.edu/-z-furedi/PUBS/furedi_C4from1988.pdf

[17]

Z. Füredi,On the number of edges of quadrilateral-free graphs, J. Combin. Theory Ser. B, 68:1-6, 1996.

[18]

Z. Füredi, Extremal quadrilater-free graphs, in: Lecture at the 1st Canadian Discrete and Algorithmic Mathematics Conference ( CanaDAM 2007), 2007.

[19]

Z. Füredi and M. The history of degenerate (bipartite) extremal graph problems, in: Erdős centennial, Bolyai Soc. Math. Stud., 25:169-264, 2013.

[20]

J. He, J. Ma, and T. Yang, Some extremal results on 4-cycles, J. Combin. Theory Ser. B, 149:92108, 2021.

[21]

K. Metsch, Linear Spaces with Few Lines, Springer Lecture Notes in Math., 1991.

[22]

K. Metsch, On the maximum size of a maximal partial plane, Rend. Mat. Appl. (7), 12:345-355, 1992.

[23]

Z. Nagy, Supersaturation of C4 : From Zarankiewicz towards Erdős-Simonovits-Sidorenko, European J. Combin., 75:19-31, 2019.

[24]

I. Reiman, Über ein Problem von K. Zarankiewicz, Acta Math. Acad. Sci. Hungar., 9:269-273, 1958.

AI Summary AI Mindmap
PDF (373KB)

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/