An Adaptive Block Bregman Proximal Gradient Method for Computing Stationary States of Multicomponent Phase-Field Crystal Model

Chenglong Bao , Chang Chen , Kai Jiang

CSIAM Trans. Appl. Math. ›› 2022, Vol. 3 ›› Issue (1) : 133 -171.

PDF (2367KB)
CSIAM Trans. Appl. Math. ›› 2022, Vol. 3 ›› Issue (1) : 133 -171. DOI: 10.4208/csiam-am.SO-2021-0002
research-article

An Adaptive Block Bregman Proximal Gradient Method for Computing Stationary States of Multicomponent Phase-Field Crystal Model

Author information +
History +
PDF (2367KB)

Abstract

In this paper, we compute the stationary states of the multicomponent phase-field crystal model by formulating it as a block constrained minimization problem. The original infinite-dimensional non-convex minimization problem is approximated by a finite-dimensional constrained non-convex minimization problem after an appropriate spatial discretization. To efficiently solve the above optimization problem, we propose a so-called adaptive block Bregman proximal gradient (AB-BPG) algorithm that fully exploits the problem’s block structure. The proposed method updates each order parameter alternatively, and the update order of blocks can be chosen in a deterministic or random manner. Besides, we choose the step size by developing a practical linear search approach such that the generated sequence either keeps energy dissipation or has a controllable subsequence with energy dissipation. The convergence property of the proposed method is established without the requirement of global Lipschitz continuity of the derivative of the bulk energy part by using the Bregman divergence. The numerical results on computing stationary ordered structures in binary, ternary, and quinary component coupled-mode Swift-Hohenberg models have shown a significant acceleration over many existing methods.

Keywords

Multicomponent coupled-mode Swift-Hohenberg model / stationary states / adaptive block Bregman proximal gradient algorithm / convergence analysis / adaptive step size

Cite this article

Download citation ▾
Chenglong Bao, Chang Chen, Kai Jiang. An Adaptive Block Bregman Proximal Gradient Method for Computing Stationary States of Multicomponent Phase-Field Crystal Model. CSIAM Trans. Appl. Math., 2022, 3(1): 133-171 DOI:10.4208/csiam-am.SO-2021-0002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Ahookhosh, L. T. K. Hien, N. Gillis, and P. Patrinos. Multi-block Bregman proximal alternating linearized minimization and its application to sparse orthogonal nonnegative matrix factorization. arXiv preprint arXiv:1908. 01402, 2019.

[2]

E. Alster, K. R. Elder, J. J. Hoyt, and P. W. Voorhees. Phase-field-crystal model for ordered crystals. Physical Review E, 95(2):022105, 2017.

[3]

E.Alster, D.Montiel, K. Thornton, and P.W. Voorhees. Simulating complex crystal structures using the phase-field crystal model. Physical Review Materials, 1(6):060801, 2017.

[4]

A. Arora, J. Qin, D. C. Morse, K. T. Delaney, G. H. Fredrickson, F. S. Bates, and K. D. Dorfman. Broadly accessible self-consistent field theory for block polymer materials discovery. Macromolecules, 49(13):4675-4690, 2016.

[5]

V. E. Badalassi, H. D. Ceniceros, and S. Banerjee. Computation of multiphase systems with phase field models. Journal of Computational Physics, 190(2):371-397, 2003.

[6]

C. Bao, H. Ji, Y. Quan, and Z. Shen. Dictionary learning for sparse coding: Algorithms and convergence analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1356-1369, 2015.

[7]

J. Barzilai and J. M. Borwein. Two-point step size gradientmethods. IMA Journal ofNumerical Analysis, 8(1):141-148, 1988.

[8]

H. H. Bauschke, J. Bolte, and M. Teboulle. A descent lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications. Mathematics of Operations Research, 42(2):330-348, 2016.

[9]

H.H. Bauschke, P. L. Combettes et al. Convex Analysis andMonotone Operator Theory in Hilbert Spaces, volume 408. Springer, 2011.

[10]

J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1-2):459-494, 2014.

[11]

F. Boyer and S. Minjeaud. Numerical schemes for a three component Cahn-Hilliard model. ESAIM: Mathematical Modelling and Numerical Analysis, 45(4):697-738, 2011.

[12]

S. A. Brazovski. Phase transition of an isotropic system to a nonuniform state. Soviet Journal of Experimental and Theoretical Physics, 41:85, 1975.

[13]

H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media, 2010.

[14]

L.-Q. Chen. Phase-field models for microstructure evolution. Annual Review of Materials Research, 32(1):113-140, 2002.

[15]

W. Chen, C. Wang, S. Wang, X. Wang, and S. M. Wise. Energy stable numerical schemes for ternary Cahn-Hilliard system. J. Sci. Comput., 84:27, 2020.

[16]

M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Reviews of Modern Physics, 65(3):851, 1993.

[17]

Q. Du, L. Ju, X. Li, and Z. Qiao. Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation. SIAM Journal on Numerical Analysis, 57(2):875-898, 2019.

[18]

Q. Du, L. Ju, X. Li, and Z. Qiao. Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Review, 63(2):317-359, 2021.

[19]

K. R. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant. Phase-field crystal modeling and classical density functional theory of freezing. Phys. Rev. B, 75:064107, Feb 2007.

[20]

K. R. Elder and M. Grant. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Physical Review E, 70(5):051605, 2004.

[21]

K. R. Elder, M. Katakowski, M.Haataja, andM. Grant. Modeling elasticity in crystal growth. Physical Review Letters, 88(24):245701, 2002.

[22]

C. M. Elliott and A. M. Stuart. The global dynamics of discrete semilinear parabolic equations. SIAM Journal on Numerical Analysis, 30(6):1622-1663, 1993.

[23]

H. Garcke, B. Nestler, and B. Stoth. A multiphase field concept: Numerical simulations of moving phase boundaries and multiple junctions. SIAM Journal on Applied Mathematics, 60(1):295-315, 1999.

[24]

M. Greenwood, N. Ofori-Opoku, J. Rottler, and N. Provatas. Modeling structural transformations in binary alloys with phase field crystals. Phys. Rev. B, 84:064104, Aug 2011.

[25]

K. Jiang and P. Zhang. Numerical mathematics of quasicrystals. Proc. Int. Cong. of Math., 3:3575-3594, 2018.

[26]

K. Jiang and W. Si. Stability of three-dimensional icosahedral quasicrystals in multicomponent systems. PhilosophicalMagazine, 100(1):84-109, 2020.

[27]

K. Jiang, W. Si, C. Chen, and C. Bao. Efficient numerical methods for computing the stationary states of phase field crystal models. SIAM Journal on Scientific Computing, 42(6):B1350-B1377, 2020.

[28]

K. Jiang, J. Tong, and P. Zhang. Stability of soft quasicrystals in a coupled-mode Swift-ohenberg model for three-component systems. Communications in Computational Physics, 19(3):559-581, 2016.

[29]

K. Jiang, C.Wang, Y. Huang, and P. Zhang. Discovery of new metastable patterns in diblock copolymers. Communications in Computational Physics, 14(2):443-460, 2013.

[30]

K. Jiang and P. Zhang. Numericalmethods for quasicrystals. Journal of Computational Physics, 256(1):428-440, 2014.

[31]

S. Lee, M. J. Bluemle, and F. S. Bates. Discovery of a Frank-Kasper σ phase in sphere-forming block copolymer melts. Science, 330(6002):349, 2010.

[32]

J. Li, X. Li, L. Ju, and X. Feng. Stabilized integrating factor runge-kutta method and unconditional preservation of maximum bound principle. SIAM Journal on Scientific Computing, 43(3):A1780-A1802, 2021.

[33]

Q. Li, Z. Zhu, G. Tang, and M. B. Wakin. Provable Bregman-divergence based methods for nonconvex and non-Lipschitz problems. arXiv preprint arXiv:1904. 09712, 2019.

[34]

X. Liu, Z. Wen, X. Wang, M. Ulbrich, and Y. Yuan. On the analysis of the discretized Kohn-Sham density functional theory. SIAM Journal on Numerical Analysis, 53(4):1758-1785, 2015.

[35]

Z. Lu and L. Xiao. Randomized block coordinate non-monotone gradient method for a class of nonlinear programming. arXiv preprint arXiv:1306. 5918, 1273, 2013.

[36]

N. D. Mermin and S. M. Troian. Mean-field theory of quasicrystalline order. Physical Review Letters, 54(14):1524, 1985.

[37]

B. Nestler and A. Choudhury. Phase-field modeling of multi-component systems. Current Opinion in Solid State and Materials Science, 15(3):93-105, 2011.

[38]

B. Nestler, H. Garcke, and B. Stinner. Multicomponent alloy aolidification: Phase-field modeling and simulations. Physical Review E, 71(4):041609, 2005.

[39]

N. Ofori-Opoku, V. Fallah, M. Greenwood, S. Esmaeili, and N. Provatas. Multicomponent phase-field crystal model for structural transformations in metal alloys. Physical Review B, 87(13):134105, 2013.

[40]

M. J. D. Powell. On search directions for minimization algorithms. Mathematical Program-ming, 4(1):193-201, 1973.

[41]

Z. Qiao, Z. Zhang, and T. Tang. An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM Journal on Scientific Computing, 33(3):1395-1414, 2011.

[42]

S. Savitz, M. Babadi, and R. Lifshitz. Multiple-scale structures: From faraday waves to softmatter quasicrystals. IUCrJ, 5(3), 2018.

[43]

J. Shen, J. Xu, and J. Yang. The scalar auxiliary variable (SAV) approach for gradient flows. Journal of Computational Physics, 353:407-416, 2018.

[44]

J. Shen, J. Xu, and J. Yang. A new class of efficient and robust energy stable schemes for gradient flows. SIAM Review, 61(3):474-506, 2019.

[45]

J. Shen and X. Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems-A, 28(4):1669, 2010.

[46]

I. Steinbach. Phase-field model formicrostructure evolution at the mesoscopic scale. Annual Review of Materials Research, 43:89-107, 2013.

[47]

J. Swift and P. C. Hohenberg. Hydrodynamic fluctuations at the convective instability. Physical Review A, 15:319-328, Jan 1977.

[48]

D. Taha, S. R. Dlamini, S. K.Mkhonta, K. R. Elder, and Z.-F.Huang. Phase ordering, transformation, and grain growth of two-dimensional binary colloidal crystals: A phase field crystal modeling. Physical Review Materials, 3(9):095603, 2019.

[49]

S.M.Wise, C.Wang, and J. S. Lowengrub. An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM Journal on Numerical Analysis, 47:2269, 2009.

[50]

X. Wu, Z. Wen, and W. Bao. A regularized Newton method for computing ground states of Bose-Einstein condensates. Journal of Scientific Computing, 73(1):303-329, 2017.

[51]

N. Xie, W. Li,F. Qiu, and A.-C. Shi. σ phase formed in conformationally asymmetric AB-type block copolymers. Acs Macro Letters, 3(9):906-910, 2014.

[52]

C. Xu and T. Tang. Stability analysis of large time-stepping methods for epitaxial growth models. SIAM Journal on Numerical Analysis, 44(4):1759-1779, 2006.

[53]

Y. Xu and W. Yin. A globally convergent algorithm for nonconvex optimization based on block coordinate update. Journal of Scientific Computing, 72(2):700-734, 2017.

[54]

X. Yang, J. Zhao, Q. Wang, and J. Shen. Numerical approximations for a three-component Cahn-Hilliard phase-field model based on the invariant energy quadratization method. MathematicalModels and Methods in Applied Sciences, 27(11):1993-2030, 2017.

[55]

Z. Zhang, Y.Ma, and Z. Qiao. An adaptive time-stepping strategy for solving the phase field crystal model. Journal of Computational Physics, 249:204-215, 2013.

[56]

L. Zhu, L. Ju, and W. Zhao. Fast high-order compact exponential time differencing Runge-Kutta methods for second-order semilinear parabolic equations. Journal of Scientific Comput-ing, 67(3):1043-1065, 2016.

AI Summary AI Mindmap
PDF (2367KB)

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/