Gradient Type Methods for Linear Hyperspectral Unmixing

Fangfang Xu , Yating Wang , Yanyan Li , Lu Liu , Tonghua Tian

CSIAM Trans. Appl. Math. ›› 2022, Vol. 3 ›› Issue (1) : 109 -132.

PDF (1683KB)
CSIAM Trans. Appl. Math. ›› 2022, Vol. 3 ›› Issue (1) : 109 -132. DOI: 10.4208/csiam-am.SO-2021-0001
research-article

Gradient Type Methods for Linear Hyperspectral Unmixing

Author information +
History +
PDF (1683KB)

Abstract

Hyperspectral unmixing (HU) plays an important role in terrain classification, agricultural monitoring, mineral recognition and quantification, and military surveillance. The existing model of the linear HU requires the observed vector to be a linear combination of the vertices. Due to the presence of noise, or any other perturbation source, we relax this linear constraint and penalize it to the objective function. The obtained model is solved by a sequence of gradient type steps which contain a projection onto the simplex constraint. We propose two gradient type algorithms for the linear HU, which can find vertices of the minimum volume simplex containing the observed hyper-spectral vectors. When the number of given pixels is huge, the computational time and complexity are so large that solving HU efficiently is usually challenging. A key observation is that our objective function is a summation of many similar simple functions. Then the computational time and complexity can be reduced by selecting a small portion of data points randomly. Furthermore, a stochastic variance reduction strategy is used. Preliminary numerical results showed that our new algorithms outperformed state-of-the-art algorithms on both synthetic and real data.

Keywords

Hyperspectral unmixing / minimum volume simplex / linear mixture model / alternating minimization / proximal gradient method / adaptive moments method / stochastic variance reduction strategy

Cite this article

Download citation ▾
Fangfang Xu, Yating Wang, Yanyan Li, Lu Liu, Tonghua Tian. Gradient Type Methods for Linear Hyperspectral Unmixing. CSIAM Trans. Appl. Math., 2022, 3(1): 109-132 DOI:10.4208/csiam-am.SO-2021-0001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. B. ADAMS, M. O. SMITH, AND P. E. JOHNSON, Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site, Journal of Geophysical Research, 91 (1986), pp. 8098-8112.

[2]

J. BARZILAI AND J. M. BORWEIN, Two-point step size gradient methods, IMA Journal of Numerical Analysis, 8 (1988), pp. 141-148.

[3]

M. BERMAN, H. KIIVERI, R. LAGERSTROM, A. ERNST, R. DUNNE, AND J. F. HUNTINGTON, ICE: A statistical approach to identifying endmembers in hyperspectral images, IEEE transactions on Geoscience and Remote Sensing, 42 (2004), pp. 2085-2095.

[4]

J. M. BIOUCAS-DIAS,A variable splitting augmented Lagrangian approach to linear spectral un-mixing, in: Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2009. WHISPERS’09. First Workshop on, IEEE, 2009, pp. 1-4.

[5]

J. M. BIOUCAS-DIAS, A. PLAZA, N. DOBIGEON, M. PARENTE, Q. DU, P. GADER,AND J. CHANUSSOT, Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5 (2012), pp. 354-379.

[6]

J. M. BIOUCASDIAS AND M. A. T. FIGUEIREDO, Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing, Optimization and Control, (2010), pp. 1-4.

[7]

J. W. BOARDMAN, Mapping target signatures via partial unmixing of AVIRIS data, JPL Airborne Geoscience Workshop, 1995.

[8]

Automating spectral unmixing of AVIRIS data using convex geometry concepts, JPL Airborne Geoscience Workshop, 2013.

[9]

J. BOLTE, S. SABACH,AND M. TEBOULLE, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Mathematical Programming, 146 (2014), pp. 459-494.

[10]

T. CHAN, C. CHI, Y. HUANG,AND W. MA, Convex analysis based minimum-volume enclos-ing simplex algorithm for hyperspectral unmixing, IEEE International Conference on Acoustics, Speech and Signal Processing, 57 (2009), pp. 1089-1092.

[11]

T. CHAN, W. MA, A. AMBIKAPATHI,AND C. CHI, A simplex volume maximization framework for hyperspectral endmember extraction, IEEE Transactions on Geoscience and Remote Sensing, 49 (2011), pp. 4177-4193.

[12]

C. CHANG, C. WU, W. LIU,AND Y. OUYANG, A new growing method for simplex-based end-member extraction algorithm, IEEE Transactions on Geoscience and Remote Sensing, 44 (2006), pp. 2804-2819.

[13]

X. CHEN, S. LIU, R. SUN,AND M. HONG, On the convergence of a class of Adam-type algorithms for non-convex optimization, in conference paper at ICLR 2019, 2019.

[14]

M. CRAIG, Minimum-volume transforms for remotely sensed data, IEEE Transactions on Geoscience and Remote Sensing, 32 (1994), pp. 542-552.

[15]

A. DEFAZIO, F. BACH, AND S. LACOSTE-JULIEN, SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives, in Advances in Neural Information Processing Systems, 2014, pp. 1646-1654.

[16]

J. H. GRUNINGER, A. J. RATKOWSKI, AND M. L. HOKE, The sequential maximum angle convex cone (SMACC) endmember model, in: Defense and Security, International Society for Optics and Photonics, 2004, pp. 1-14.

[17]

A. IFARRAGUERRI AND C. CHANG, Multispectral and hyperspectral image analysis with convex cones, IEEE Transactions on Geoscience and Remote Sensing, 37 (1999), pp. 756-770.

[18]

N. KESHAVA AND J. F. MUSTARD, Spectral unmixing, IEEE Signal ProcessingMagazine, 2002.

[19]

D. P. KINGMA AND J. L. BA, Adam: A method for stochastic optimization, International Conference on Learning Representations, 2015.

[20]

J. LI, A. AGATHOS, AND D. E. A. ZAHARIE, Minimum volume simplex analysis: A fast algorithm for linear hyperspectral unmixing, in: IEEE Transactions on Geoscience & Remote Sensing, vol. 53, IEEE, 2015, pp. 5067-5082.

[21]

J. LI, X. LI, AND L. ZHAO, Hyperspectral unmixing via projected mini-batch gradient descent, in: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), FortWorth, Texas, USA, 2017. 7.23-2017.7.28, pp.1133-1136.

[22]

S. LIANGROCAPART AND M. PETROU, Mixed pixels classification, Remote Sensing, (1998), pp. 72-83.

[23]

L. MIAO AND H. QI, Endmember extraction from highly mixed data using minimum volume con-strained nonnegative matrix factorization, IEEE Transactions on Geoscience and Remote Sensing, 45 (2007), pp. 765-777.

[24]

J. M. P. NASCIMENTO AND J. M. BIOUCASDIAS, Hyperspectral unmixing algorithm via depen-dent component analysis, (2007), pp. 4033-4036.

[25]

Hyperspectral unmixing based on mixtures of Dirichlet components, IEEE Transactions on Geoscience and Remote Sensing, 50 (2012), pp. 863-878.

[26]

J. M. P. NASCIMENTO AND J. M. B. DIAS, Does independent component analysis play a role in unmixing hyperspectral data?, IEEE Transactions on Geoscience and Remote Sensing, 43(2005), pp. 175-187.

[27]

Vertex component analysis: A fast algorithmto unmix hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, 43 (2005), pp. 898-910.

[28]

R. NEVILLE, K. STAENZ, T. SZEREDI, J. LEFEBVRE, AND P. HAUFF,Automatic endmember extraction from hyperspectral data for mineral exploration, in: Proc. 21st Can. Symp. Remote Sens, 1999, pp. 21-24.

[29]

A. PLAZA, P. MARTINEZ, R. PEREZ,AND J. PLAZA, Spatial/spectral endmember extraction by multidimensional morphological operations, IEEE Transactions on Geoscience and Remote Sensing, 40 (2002), pp. 2025-2041.

[30]

A. PLAZA, P. MARTINEZ, R. M. PEREZ,AND J. PLAZA, A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, 42 (2004), pp. 650-663.

[31]

Y. QIAN, S. JIA, J. ZHOU, AND A. ROBLES-KELLY, Hyperspectral unmixing via l1/2 sparsity-constrained nonnegative matrix factorization, IEEE Transactions on Geoscience and Remote Sensing, 49 (2011), pp. 4282-4297.

[32]

H. ROBBINS AND S. MONRO, A stochastic approximation method, The Annals of Mathematical Statistics, (1951), pp. 400-407.

[33]

W. WANG AND M. A. CARREIRAPERPINAN, Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application,Mathematics, (2013).

[34]

M. E. WINTER, N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data, in: SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, International Society for Optics and Photonics, 1999, pp. 266-275.

[35]

L. XIAO AND T. ZHANG, A proximal stochastic gradient method with progressive variance reduc-tion, SIAM Journal on Optimization, 24 (2014), pp. 2057-2075.

[36]

F. ZHU AND P. HONEINE, Online nonnegative matrix factorization based on kernel machines, in: Proc. 23rd European Conference on Signal Processing (EUSIPCO), Nice, France, 31 Aug.-4 Sept., 2015, pp. 2381-2385.

[37]

F. ZHU, Y. WANG, B. FAN, G. MENG,AND C. PAN, Effective spectral unmixing via robust representation and learning-based sparsity, Computer Science, (2014).

[38]

F. ZHU, Y. WANG, B. FAN, G. MENG, S. XIANG, AND C. PAN, Spectral unmixing via data-guided sparsity, Computer Science, (2014).

[39]

F. ZHU, Y. WANG, S. XIANG, B. FAN,AND C. PAN, Structured sparse method for hyperspectral unmixing, ISPRS Journal of Photogrammetry and Remote Sensing, 88 (2014), pp. 101-118.

AI Summary AI Mindmap
PDF (1683KB)

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/