Boundary Condition for Dislocation Dynamic Simulation in BCC Crystal

Shuyang Dai , Fengru Wang , Yang Xiang , Jerry Zhijian Yang , Cheng Yuan

CSIAM Trans. Appl. Math. ›› 2021, Vol. 2 ›› Issue (1) : 175 -194.

PDF (1958KB)
CSIAM Trans. Appl. Math. ›› 2021, Vol. 2 ›› Issue (1) : 175 -194. DOI: 10.4208/csiam-am.SO-2020-0003
research-article

Boundary Condition for Dislocation Dynamic Simulation in BCC Crystal

Author information +
History +
PDF (1958KB)

Abstract

The movement of dislocations and the corresponding crystal plastic deformation are highly influenced by the interaction between dislocations and nearby free surfaces. The boundary condition for inclination angle θinc  which indicates the relation between a dislocation line and the surface is one of the key ingredients in the dislocation dynamic simulations. In this paper, we first present a systematical study on θinc  by molecular static simulations in BCC-irons samples. We also study the inclination angle by using molecular dynamic simulations. A continuum description of inclination angle in both static and dynamic cases is derived based on Onsager's variational principle. We show that the results obtained from continuum description are in good agreement with the molecular simulations. These results can serve as boundary conditions for dislocation dynamics simulations.

Keywords

Dislocation / dislocation dynamics / boundary conditions / analytical model / Onsager's variational principle

Cite this article

Download citation ▾
Shuyang Dai, Fengru Wang, Yang Xiang, Jerry Zhijian Yang, Cheng Yuan. Boundary Condition for Dislocation Dynamic Simulation in BCC Crystal. CSIAM Trans. Appl. Math., 2021, 2(1): 175-194 DOI:10.4208/csiam-am.SO-2020-0003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hirth J.P., Lothe J., 1982. Theory of Dislocations, 2nd ed. John Wiley, New York.

[2]

Bulatov V.V., Cai W., 2006. Computer Simulations of Dislocations. Oxford.

[3]

Sills, R., Kuykendall W.P., Aghaei A., Cai W., 2016. Fundamentals of dislocation dynamics simulations, in: C, C.R.W., Tucker, G.J. (Eds.), Multiscale Materials Modeling for Nanomechanics. Springer Series in Materials Science, vol 245.. Springer, Cham. chapter 2, pp. 53-87.

[4]

Dewit R., 1968. Thermodynamic force on a dislocation. Journal of Applied Physics 39, 137.

[5]

Zhou Q., Wang J., Misra A., Huang P., Wang F., Xu K., 2017. Dislocations interaction induced structural instability in intermetallic Al2Cu. npj Computational Materials 3,24.

[6]

Kraych A., Clouet E., Dezerald L., Ventelon L., Willaime F., Rodney D., 2019. Non-glide effects and dislocation core fields in BCC metals. npj Computational Materials 5, 109.

[7]

Moriarty J.A., Vitek V., Bulatov V.V., Yip S., 2002. Atomistic simulations of dislocations and defects. Journal of Computer-aided Materials Design 9, 99.

[8]

Lepinoux J., Kubin L.P., 1987. The dynamic organization of dislocation structures: A simulation. Scr. Metall. Mater 21, 833.

[9]

Ghoniem N.M., Amodeo R., 1988. Computer simulaltion of dislocation pattern formation. Solid State Phenom. 3&4, 377.

[10]

Gulluoglu A.N., Srolovitz D.J., LeSar R., Lomdahl P.S., 1989. Dislocation distributions in two dimensions. Scr. Metall. 23, 1347.

[11]

Kubin L.P., Canova G., Condat M., DeVincre B., Pontikis V., Brechet Y., 1992. Dislocation microstructures and plastic flow: A 3D simulation. Solid State Phenom. 23, 455.

[12]

DeVincre B., Kubin L.P., 1994. Simulations of forest interactions and strain hardening in FCC crystals. Modell. Simul. Mater. Sci. Eng. 2, 559.

[13]

der Giessen E.V., Needleman A., 1995. Discrete dislocation plasticity: A simple planar model. Modell. Simul. Mater. Sci. Eng. 3, 689-735.

[14]

Schwarz K.W., 1999. Simulation of dislocations on the mesoscopic scale. I. methods and examples. J. Appl. Phys. 85, 108.

[15]

Fivel M.C., Canova G.R., 1999. Developing rigorous boundary conditions to simulations of discrete dislocation dynamics. Modell. Simul. Mater. Sci. Eng. 7, 753.

[16]

Ghoniem N.M., Tong S.H., Sun L.Z., 2000. Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation. Phys. Rev. B 61, 913.

[17]

Lemarchand C., Devincre B., Kubin L.P., 2001. Homogenization method for a discretecontinuum simulation of dislocation dynamics. J. Mech. Phys. Solids 49, 1969-1982.

[18]

Weygand D., Friedman L.H., der Giessen E.V., Needleman A., 2002. Aspects of boundaryvalue problem solutions with three-dimensional dislocation dynamics. Modell. Simul. Mater. Sci. Eng. 10, 437.

[19]

Zbib H.M., de la Rubia T.D., 2002. A multiscale model of plasticity. Int. J. Plast. 18, 11331163.

[20]

Xiang Y., Cheng L.T., Srolovitz D.J., E, W., 2003. A level set method for dislocation dynamics. Acta Mater. 51, 5499.

[21]

Liu X.H., Scwarz K.W., 2005. Modelling of dislocations intersecting a free surface. Modelling and Simulation in Materials Science and Engineering 13, 1233.

[22]

Bulatov V.V., Hsiung L.L., Tang M., Arsenlis A., Bartelt M.C., Cai W., Florando J.N., Hiratani M., Rhee M., Hommes G., Pierce T.G., de la Rubia T.D., 2006. Dislocation multijunctions and strain hardening. Nature 440, 1174-1178.

[23]

Devincre B., Kubin L., Hoc T., 2006. Physical analyses of crystal plasticity by DD simulations. Scr. Mater. 54, 741-746.

[24]

Espinosa H.D., Panico M., Berbenni S., Schwarz K.W., 2006. Discrete dislocation dynamics simulations to interpret plasticity size and surface effects in freestanding FCC thin films. Int. J. Plast. 22, 2091-2117.

[25]

Tang M., Cai W., Xu G., Bulatov V.V., 2006. A hybrid method for computing forces on curved dislocations intersecting free surfaces in three-dimensional dislocation dynamics. Modelling and Simulation in Materials Science and Engineering 14, 1139.

[26]

Wang Z., Ghoniem N.M., Swaninarayan S., LeSar R., 2006. A parallel algorithm for 3D dislocation dynamics. J. Comput. Phys. 219, 608.

[27]

Quek S., Xiang Y., Zhang Y., Srolovitz D., Lu C., 2006. Level set simulation of dislocation dynamics in thin films. Acta Mater. 54, 2371-2381.

[28]

Arsenlis A., Cai W., Tang M., Rhee M., Oppelstrup T., Hommes T.G., Pierce T.G., Bulatov V.V., 2007. Enabling strain hardening simulations with dislocation dynamics. Modell. Simul. Mater. Sci. Eng. 15, 553.

[29]

El-Awady J.A., Biner S.B., Ghoniem N.M., 2008. A self-consistent boundary element, para-metric dislocation dynamics formulation of plastic flow in finite volumes. J. Mech. Phys. Solids 56, 2019-2035.

[30]

Queyreau S., Monnet G., Devincre B., 2009. Slip systems interactions in alpha-iron determined by dislocation dynamics simulations. Int. J. Plast. 25, 361-377.

[31]

Weinberger C.R., Aubry S., Lee S.W., Nix W.D., Cai W., 2009. Modelling dislocations in a free-standing thin film. Modell. Simul. Mater. Sci. Eng. 17, 075007.

[32]

Devincre B., Madec R., Monnet G., Queyreau S., Gatti R., Kubin L., 2011. Modeling crystal plasticity with dislocation dynamics simulations: The 'micro-megas' code. Mech. Nano-objects, 81-100.

[33]

Zhou C., Beyerlein I.J., LeSar R., 2011. Plastic deformation mechanisms of FCC single crystals at small scales. Acta Mater. 59, 7673-7682.

[34]

Zhao D., Huang J., Xiang Y., 2012. Fast multipole accelerated boundary integral equation method for evaluating the stress field associated with dislocations in a finite medium. Commun. Comput. Phys. 12, 226-246.

[35]

Huang M., Zhao L., Tong J., 2012. Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys. Int. J. Plasticity 28, 141.

[36]

Po G., Mohamed M.S., Crosby T., Erel C., El-Azab A., Ghoniem N., 2012. Recent progress in discrete dislocation dynamics and its applications to micro plasticity. JOM: The journal of the Minerals, Metals and Materials Society 66, 2108-2120.

[37]

Zhou C., LeSar R., 2012. Dislocation dynamics simulations of plasticity in polycrystalline thin films. Int. J. Plast. 30, 185-201.

[38]

Devincre B., 2013. Dislocation dynamics simulations of slip systems interactions and forest strengthening in ice single crystal. Philos. Mag. 93, 235-246.

[39]

Ferroni F., Tarleton E., Fitzgerald S., 2014. Dislocation dynamics modelling of radiation damage in thin films. Modell. Simul. Mater. Sci. Eng. 22, 045009.

[40]

Vattré A., Devincre B., Feyel F., Gatti R., Groh S., Jamond O., Roos A., 2014. Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The discretecontinuous model revisited. J. Mech. Phys. Solids 63, 491-505.

[41]

Bertin N., 2019. Connecting discrete and continuum dislocation mechanics: A non-singular spectral framework. Int. J. Plast. 122, 268-284.

[42]

Lothe J., 1970. The image force on dislocations at free surfaces - Comments on the concept of line tension. Fundamental Aspects of Dislocation Theory Spec. Publ. 317, 11.

[43]

Yoffe E.H., 1961. A dislocation at a free surface. Philos. Mag. 6, 1147-1155.

[44]

Mendelev M.I., Han S., Srolovitz D.J., Ackland G.J., Sun D.Y., Asta M., 2003. Development of new interatomic potentials appropriate for crystalline and liquid iron. Philosophical Magazine 83, 3977.

[45]

Domain C., Monnet G., 2005. Simulation of screw dislocation motion in iron by molecular dynamics simulations. Physical Review Letters 95, 215506.

[46]

Clouet E., Garruchet S., Nguyen H., Perez M., Becquart C.S., 2008. Dislocation interaction with C in -Fe : A comparison between atomic simulations and elasticity theory. Acta Materialia 56, 3450.

[47]

Queyreau S., Marian J., Gilbert M.R., Wirth B.D., 2011. Edge dislocation mobilities in bcc Fe obtained by molecular dynamics. Physical Review B 84, 064106.

[48]

Peng S., Wei Y., Jin Z., Yang W., 2019. Supersonic screw dislocations gliding at the shear wave speed. Physical Review Letters 122, 045501.

[49]

Eshelby J.D., 1949. LXXXII. Edge dislocations in anisotropic materials. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40:308, 903.

[50]

Onsager L., 1931a. Reciprocal relations in irreversible processes. I. Physical Review 37(4), 405.

[51]

Onsager L., 1931b. Reciprocal relations in irreversible processes. II. Physical Review 38(12), 2265.

[52]

Qian T., Wang X.P., Sheng P., 2006. A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333-360.

[53]

Xu X., Qian T., 2017. Hydrodynamics boundary conditions derived from Onsager's variational principle. Procedis IUTAM 20, 144-151.

[54]

Xu X., Di Y., Doi M., 2016. Variational method for liquids moving on a substrate. Phys. Fluids 28(8), 087101.

[55]

Di Y., Xu X., Zhou J., Doi M., 2018. Thin film dynamics in coating problems using Onsager principle. Chin. Phys. 27(2), 024501.

[56]

Man X., Doi M., 2016. Ring to mountain transition in deposition pattern of drying droplets. Phys. Rev. Lett. 116(6), 066101.

[57]

OKraft O., Gruber P. A., Mnig R., Weygand D., 2010. Plasticity in confined dimensions. Annual Review of Materials Research 40, 293.

AI Summary AI Mindmap
PDF (1958KB)

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/