A priori Error Analysis of a Discontinuous Galerkin Method for Cahn-Hilliard-Navier-Stokes Equations

Chen Liu , Béatrice Rivière

CSIAM Trans. Appl. Math. ›› 2020, Vol. 1 ›› Issue (1) : 104 -141.

PDF (743KB)
CSIAM Trans. Appl. Math. ›› 2020, Vol. 1 ›› Issue (1) :104 -141. DOI: 10.4208/csiam-am.2020-0005
research-article

A priori Error Analysis of a Discontinuous Galerkin Method for Cahn-Hilliard-Navier-Stokes Equations

Author information +
History +
PDF (743KB)

Abstract

In this paper, we analyze an interior penalty discontinuous Galerkin method for solving the coupled Cahn-Hilliard and Navier-Stokes equations. We prove uncon-ditional unique solvability of the discrete system, and we derive stability bounds without any restrictions on the chemical energy density function. The numerical solutions satisfy a discrete energy dissipation law and mass conservation laws. Convergence of the method is obtained by obtaining optimal a priori error estimates.

Keywords

Cahn-Hilliard-Navier-Stokes / interior penalty discontinuous Galerkin method / ex-istence / uniqueness / stability / error estimates

Cite this article

Download citation ▾
Chen Liu, Béatrice Rivière. A priori Error Analysis of a Discontinuous Galerkin Method for Cahn-Hilliard-Navier-Stokes Equations. CSIAM Trans. Appl. Math., 2020, 1(1): 104-141 DOI:10.4208/csiam-am.2020-0005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. O. Alpak, B. Riviere, and F. Frank. A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition. Computational Geosciences, 20(5):881-908, 2016.

[2]

A. C. Aristotelous, O. Karakashian, and S. M. Wise. A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete & Continuous Dynamical Systems-Series B, 18(9):2211-2238, 2013.

[3]

V. Badalassi, H. Ceniceros, and S. Banerjee. Computation of multiphase systems with phase field models. Journal of Computational Physics, 190:317-397, 2003.

[4]

J. W. Barrett, J. F. Blowey, and H. Garcke. Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM Journal on Numerical Analysis, 37(1):286-318, 1999.

[5]

Y. Cai and J. Shen. Error estimates for a fully discretized scheme to a Cahn-Hilliard phase-field model for two-phase incompressible flows. Mathematics of Computation, 87:2057-2090, 2018.

[6]

N. Chaabane, V. Girault, C. Puelz, and B. Riviere. Convergence of IPDG for coupled time-dependent Navier-Stokes and Darcy equations. Journal of Computational and Applied Mathe-matics, 324:25-48, 2017.

[7]

P. G. Ciarlet. Linear and nonlinear functional analysis with applications, volume 130. SIAM, 2013.

[8]

M. Copetti and C. M. Elliott. Numerical analysis of the Cahn-Hilliard equation with a loga-rithmic free energy. Numerische Mathematik, 63(1):39-65, 1992.

[9]

A. E. Diegel, C. Wang, X. Wang, and S. M. Wise. Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system. Numerische Mathematik, 137(3):495-534, 2017.

[10]

H. Ding and P. Spelt. Wetting condition in diffuse interface simulations of contact line motion. Physical Review E, 75:046708-1-046708-8, 2007.

[11]

D. J. Eyre. Unconditionally gradient stable time marching the Cahn-Hilliard equation. In Symposia BB - Computational & Mathematical Models of Microstructural Evolution, volume 529 of MRS Proceedings, 1998.

[12]

X. Feng. Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM Journal on Numerical Analysis, 44(3):1049-1072, 2006.

[13]

X. Feng and O. Karakashian. Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Mathematics of Computation, 76(259):1093-1117, 2007.

[14]

F. Frank, C. Liu, F. O. Alpak, S. Berg, and B. Riviere. Direct numerical simulation of flow on pore-scale images using the phase-field method. SPE Journal, 23(5):1833-1850, 2018.

[15]

F. Frank, C. Liu, F. O. Alpak, and B. Riviere. A finite volume/discontinuous Galerkin method for the advective Cahn-Hilliard equation with degenerate mobility on porous do-mains stemming from micro-CT imaging. Computational Geosciences, 22(2):543-563, 2018.

[16]

F. Frank, C. Liu, A. Scanziani, F. O. Alpak, and B. Riviere. An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods. Journal of Colloid and Interface Science, 523:282-291, 2018.

[17]

V. Girault, J. Li, and B. Riviere. Strong convergence of the discontinuous Galerkin scheme for the low regularity miscible displacement equations. Numerical Methods for Partial Differential Equations, 33(2):489-513, 2017.

[18]

V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations: theory and algorithms, volume 5. Springer-Verlag, 1986.

[19]

V. Girault, B. Riviere, and M. Wheeler. A discontinuous Galerkin method with nonover-lapping domain decomposition for the Stokes and Navier-Stokes problems. Mathematics of Computation, 74(249):53-84, 2005.

[20]

V. Girault, B. Riviere, and M. F. Wheeler. A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis, 39(6):1115-1147, 2005.

[21]

J.-L. Guermond, P. Minev, and J. Shen. An overview of projection methods for incompressible flows. Computer Methods in Applied Mechanics and Engineering, 195(44-47):6011-6045, 2006.

[22]

D. Han and X. Wang. A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation. Journal of Computational Physics, 290:139-156, 2015.

[23]

D. Kay, V. Styles, and E. Sü li. Discontinuous Galerkin finite element approximation of the Cahn-Hilliard equation with convection. SIAM Journal on Numerical Analysis, 47(4):2660-2685, 2009.

[24]

D. Kay, V. Styles, and R. Welford. Finite element approximation of a Cahn-Hilliard-Navier-Stokes system. Interfaces Free Bound, 10(1):15-43, 2008.

[25]

D. Kay and R. Welford. Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2D. SIAM Journal on Scientific Computing, 29(6):2241-2257, 2007.

[26]

C. Liu, F. Frank, and B. Riviere. Numerical error analysis for non-symmetric interior penalty discontinuous Galerkin method of Cahn-Hilliard equation. Numerical Methods for Partial Differential Equations, 2019.

[27]

C. Liu, F. Frank, C. Thiele, F. O. Alpak, S. Berg, W. Chapman, and B. Rivière. An efficient numerical algorithm for solving viscosity contrast Cahn-Hilliard-Navier-Stokes system in porous media. Journal of Computational Physics, 400:108948, 2020.

[28]

C. Liu and J. Shen. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D: Nonlinear Phenomena, 179(3):211-228, 2003.

[29]

A. Novick-Cohen. The Cahn-Hilliard equation. Handbook of Differential Equations: Evolution-ary Equations, 4:201-228, 2008.

[30]

Z. Qiao and S. Sun. Two-phase fluid simulation using a diffuse interface model with Peng-Robinson equation of state. SIAM Journal on Scientific Computing, 36(4):B708-B728, 2014.

[31]

B. Riviere. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics, 2008.

[32]

J. Shen and X. Yang. Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM Journal on Numerical Analysis, 53(1):279-296, 2015.

[33]

R. Temam. Navier-Stokes equations: theory and numerical analysis, volume 343. American Mathematical Soc., 2001.

[34]

X. Yang and J. Zhao. On linear and unconditionally energy stable algorithms for variable mo-bility Cahn-Hilliard type equation with logarithmic Flory-Huggins potential. arXiv preprint arXiv:1701. 07410, 2017.

[35]

A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15(4):915-936, 2003.

PDF (743KB)

353

Accesses

0

Citation

Detail

Sections
Recommended

/