General Tikhonov Regularization with Applications in Geoscience

Yanfei Wang , Alexander S. Leonov , Dmitry V. Lukyanenko , Anatoly G. Yagola

CSIAM Trans. Appl. Math. ›› 2020, Vol. 1 ›› Issue (1) : 53 -85.

PDF (548KB)
CSIAM Trans. Appl. Math. ›› 2020, Vol. 1 ›› Issue (1) :53 -85. DOI: 10.4208/csiam-am.2020-0004
research-article

General Tikhonov Regularization with Applications in Geoscience

Author information +
History +
PDF (548KB)

Abstract

The article is devoted to a review of the following new elements of the modern theory of solving inverse problems: (a) general theory of Tikhonov’s regularization with practical examples is considered; (b) an overview of a-priori and a-posteriori error estimates for solutions of ill-posed problems is presented as well as a general scheme of a-posteriori error estimation; (c) a-posteriori error estimates for linear inverse prob-lems and its finite-dimensional approximation are considered in detail together with practical a-posteriori error estimate algorithms; (d) optimality in order for the error estimator and extra-optimal regularizing algorithms are also discussed. In addition, the article contains applications of these theoretical results to solving two practical geophysical problems. First, for inverse problems of computer microtomography in microstructure analysis of shales, numerical experiments demonstrate that the use of functions with bounded VH-variation for a piecewise uniform regularization has a theoretical and practical advantage over methods using BV-variation. For these problems, a new algorithm of a-posteriori error estimation makes it possible to calculate the error of the solution in the form of a number. Second, in geophysical prospecting, Tikhonov’s regularization is very effective in magnetic parameters inversion method with full tensor gradient data. In particular, the regularization algorithms allow to compare different models in this method and choose the best one, MGT-model.

Keywords

Regularization / a-posteriori error estimates / extra-optimal methods / microtomogra-phy / magnetic parameters inversion

Cite this article

Download citation ▾
Yanfei Wang, Alexander S. Leonov, Dmitry V. Lukyanenko, Anatoly G. Yagola. General Tikhonov Regularization with Applications in Geoscience. CSIAM Trans. Appl. Math., 2020, 1(1): 53-85 DOI:10.4208/csiam-am.2020-0004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. W. Anzengruber and R. Ramlau. Morozov’s discrepancy principle for Tikhonov-type functionals with nonlinear operators. Inverse Problems, 26 (2010): 025001.

[2]

S. W. Anzengruber and R. Ramlau. Convergence rates for Morozovs discrepancy principle using variational inequalities. Inverse Problems, 27 (2011): 105007.

[3]

R. Acar and C. Vogel. Analysis of BV-penalty methods for ill-posed problems. Inverse Problems, 10 (1994): 1217-1229.

[4]

O. M. Alifanov, E. A. Artuhin and S. V. Rumyantsev. Extreme methods for the solution of ill-posed problems, Moscow: Nauka, 1988.

[5]

A. B. Bakushinsky. A-posteriori error estimates for approximate solutions of irregular operator equations. Doklady Mathematics, 83 (2011): 439-440.

[6]

A. Bakushinsky and A. Goncharsky. Ill-Posed Problems: Theory and Applications. Dordrecht: Kluwer, 1994.

[7]

J. Cheng and M. Yamamoto. On new strategy for a priori choice of regularizing parameters in Tikhonov’s regularization. Inverse Problems, 16 (2000), L31-38.

[8]

J. Cheng, B. Hofmann and S. Lu. The index function and Tikhonov regularization for ill-posed problems. J. Comput. Appl. Math., 265 (2014), 110-119.

[9]

H. W. Engl, M. Hanke and A. Neubauer. Regularization of Inverse Problems. Dordrecht: Kluwer, 1996.

[10]

Yu. L. Gaponenko and V. A. Vinokurov. A-posteriori estimates of solutions to ill-posed inverse problems. Soviet Mathem. Dokl., 263 (1982): 277-280.

[11]

P. Heath, G. Heinson and S. Greenhalgh. Some comments on potential field tensor data. Exploration Geophysics, 34 (2003), 57-62.

[12]

B. Hofmann, B. Kaltenbacher, C. Pöschl and O. Scherzer. A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems 23 (2007), 987-1010.

[13]

K. Ito and B. Jin. Inverse problems: Tikhonov theory and algorithms. Series on Applied Mathe-matics 22, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.

[14]

V. K. Ivanov, V. V. Vasin, and V. P. Tanana. The Theory of Linear Ill-Posed Problems and Its Applications (in Russian). Moscow: Nauka, 1978; (in English), Utrecht: VSP, 2002.

[15]

S. X. Ji, Y. F. Wang and A. Q. Zou, Regularizing inversion of susceptibility with projection onto convex set using full tensor magnetic gradient data. Inverse Problems in Science and Engineering, 25 (2017), 202-217.

[16]

A. V. Goncharskii, A.S. Leonov and A.G. Yagola. A generalized discrepancy principle. USSR Computational Mathematics and Mathematical Physics, 13(1973), 25-37.

[17]

C. W. Groetsch. Inverse Problems in the Mathematical Sciences. Wiesbaden: Vieweg, 1993.

[18]

E. Guisti. Minimal surfaces and functions of bounded variation. Boston: Birkhauser, 1984.

[19]

A. C. Kak and M. Slaney. Principles of Computerized Tomographic Imaging. Philadelphia: Society of Industrial and Applied Mathematics, 2001.

[20]

B. Kaltenbacher, A. Neubauer and O. Scherzer. Iterative Regularization Methods for Nonlinear Ill-Posed Problems. Berlin: Walter de Gruyter, 2008.

[21]

R. A. Ketcham and W. D. Carlson. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences. Comput. Geosci., 27(2001): 381-400.

[22]

M. M. Lavrentiev. Some Improperly Posed Problems in Mathematical Physics. Springer: Berlin, 1967.

[23]

A. S. Leonov. On the total variation for functions of several variables and a multidimen-sional analog of Helly’s selection principle. Mathematical Notes, 63(1996): 61-71.

[24]

A. S. Leonov. Functions of several variables with bounded variation in ill-posed problems. Comput. Math. and Math. Phys., 36(1996): 1193-1203.

[25]

A. S. Leonov. Application of functions of several variables with limited variations for piece-wise uniform regularization of ill-posed problems. J. Inv. Ill-Posed Problems, 6(1998): 67-94.

[26]

A. S. Leonov. Numerical piecewise-uniform regularization for two-dimensional ill-posed problems. Inverse Problems, 15(1999): 1165-1176.

[27]

A. S. Leonov. Piecewise uniform regularization of two-dimensional ill-posed problems with discontinuous solutions. Comput. Math. and Math. Phys., 39(1999): 1861-1866.

[28]

A. S. Leonov. Elimination of accuracy saturation in regularizing algorithms. Numerical Analysis and Applications, 11 (2008): 167-186.

[29]

A. S. Leonov. Solution of Ill-Posed Inverse Problems. Theory Review, Practical Algorithms and MATLAB Demonstrations (in Russian), Moscow: Librokom, 2009.

[30]

A. S. Leonov. Solution of Ill-Posed Inverse Problems. Theory Review, Practical Algorithms and MATLAB demonstrations (in Russian). Moscow: Librokom, 2010.

[31]

A. S. Leonov. On a-posteriori accuracy estimates for solutions of linear ill-posed problems and extra-optimal regularizingm algorithms. Numerical Methods and Programming, 11(2010): 14-24.

[32]

A. S. Leonov. Extraoptimal a-posteriori estimates of the solution accuracy in the ill-posed problems of the continuation of potential geophysical fields. Izvestiya, Physics of the Solid Earth, 47(2011): 531-540.

[33]

A. S. Leonov. A posteriori accuracy estimations of solutions of ill-posed inverse problems and extra-optimal regularizing algorithms for their solution. Num. Anal. and Appl., 5 (2012): 68-83.

[34]

A. S. Leonov. Extra-optimal methods for solving ill-posed problems. J.Inverse Ill-Posed Probl., 20(2012):637-665.

[35]

A. S. Leonov. Locally extra-optimal regularizing algorithms. J.Inverse Ill-Posed Probl., 22(2014):713-737.

[36]

A. S. Leonov. Methods for solving ill-posed extremum problems with optimal and extra-optimal properties. Mathematical Notes, 105(2019): 385-397.

[37]

A. S. Leonov and A. G. Yagola. Special regularizing methods for ill-posed problems with sourcewise represented solutions. Inverse Problems, 14(1998): 1539-1550.

[38]

Y. G. Li and D. W. Oldenburg. 3-D inversion of magnetic data. Geophysics, 61(1996): 394-408.

[39]

D. V. Lukyanenko, A. G. Yagola and N. A. Evdokimova. Application of inversion methods in solving ill-posed problems for magnetic parameter identification of steel hull vessel. Journal of Inverse and Ill-Posed Problems, 18(2011): 1013-1029.

[40]

D. V. Lukyanenko and A. G. Yagola. Some methods for solving of 3d inverse problem of magnetometry. Eurasian Journal of Mathematical and Computer Applications, 4 (2016): 4-14.

[41]

P. Mathé and S. V. Pereverzev. Geometry of linear ill-posed problems in variable Hilbert scales. Inverse Problems, 19 (2003), 789-803.

[42]

P. Mathé. The Lepskĭi principle revisited. Inverse Problems, 22 (2006), L11-L15.

[43]

S. C. Mayo and A. M. Tulloh A. Trinchi and Sam Y. S. Yang. Data-constrained microstructure characterization with multispectrum X-ray micro-CT. Microsc. Microanal., 18(2012): 524-530.

[44]

V. A. Morozov. Methods for solving incorrectly posed problems. New York: Springer-Verlag, 1984.

[45]

F. Natterer. Error bounds for Tikhonov regularization in Hilbert scales. Appl. Anal., 18 (1984), 29-37.

[46]

F. Natterer. The Mathematics of Computerized Tomography. Stuttgart: B. G. Teubner, 1986.

[47]

M. T. Nair, S. V. Pereverzev and U. Tautenhahn. Regularization in Hilbert scales under general smoothing conditions. Inverse Problems, 21(2005): 1851-1869.

[48]

M. Z. Nashed, O. Scherzer. Inverse Problems, Image Analysis, and Medical Imaging, AMS Special Session on Interaction of Inverse Problems and Image Analysis, Jan.10-13, New Or-leans, Louisiana, in Contemporary Mathematics, Vol. 313, 2001.

[49]

A. Neubauer. Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales. Appl. Anal, 46 (1992), 59-72.

[50]

S. V. Pereverzev and B. Hofmann. Estimation of linear functionals from indirect noisy data without knowledge of the noise level. GEM International Journal on Geomathematics, 1(2010), 121-131.

[51]

A. Pignatelli, I. Nicolosi and M. Chiappini. An alternative 3D inversion method for mag-netic anomalies with depth resolution. Annals of Geophysics, 49(2006): 1021-1027.

[52]

O. Portniaguine and M. S. Zhdanov. Focusing geophysical inversion images. Geophysics, 64(1999): 874-887.

[53]

O. Portniaguine and M. S. Zhdanov, 3-D magnetic inversion with data compression and image focusing. Geophysics, 67(2002): 1532-1541.

[54]

R. Ramlau. Morozov’s discrepancy principle for Tikhonov regularization of nonlinear operators. Numer. Funct. Anal. and Optimiz., 23(2002): 147-172.

[55]

V. Sadovnichy, A. Tikhonravov, Vl. Voevodin and V. Opanasenko. “Lomonosov”:Super-computing at Moscow State University. In Contemporary High Performance Computing:From Petascale toward Exascale. Chapman & Hall/CRC Computational Science, Boca Raton, USA: CRC Press, 283-307, 2013.

[56]

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen. Variational Methods in Imaging (Applied Mathematical Sciences, Vol. 167) (New York: Springer), 2009.

[57]

M. Schiffler, M. Queitsch, R. Stolz, A. Chwala, W. Krech, H.-G. Meyer and N. Kukowski. Calibration of SQUID vector magnetometers in full tensor gradiometry systems. Geophysical Journal International, 198(2014): 954-964.

[58]

P. W. Schmidt and D. A. Clark. Advantages of measuring the magnetic gradient tensor. Preview, 85(2000): 26-30.

[59]

P. W. Schmidt, D. A. Clark, K. E. Leslie, M. Bick and D. L. Tilbrook. GETMAG-a SQUID magnetic tensor gradiometer for mineral and oil exploration. Exploration Geophysics, 35(2004): 297-305.

[60]

T. Schuster, B. Kaltenbacher, B. Hofmann and K. S. Kazimierski. Regularization Methods in Banach Spaces (Radon Series on Computational and Applied Mathematics, Vol. 10) (Berlin: Walter de Gruyter), 2012.

[61]

L. Shepp and B. F. Logan. The Fourier reconstruction of a head section. IEEE Trans. Nuclear Sci., 21(1974): 21-43.

[62]

V. P. Tanana. Methods for solution of nonlinear operator equations (in Russian). Moscow: Nauka, 1981; (in English), Utrecht: VSP, 1997.

[63]

A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. Philadel-phia: SIAM, 2005.

[64]

U. Tautenhahn. Optimality for ill-posed problems under general source conditions. Numer. Funct. Anal. and Optimiz., 19(1998): 377-398.

[65]

V. N. Titarenko and A. G. Yagola. The problems of linear and quadratic programming for ill-posed problems on some compact sets. J. Inverse and Ill-posed Problems, 11 (2003): 311-328.

[66]

V. Titarenko and A. Yagola. Error estimation for ill-posed problems on piecewise convex functions and sourcewise represented sets. J. Inverse Ill-Posed Probl., 16 (2008):625-638.

[67]

A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet. Math. Dokl., 4(1963): 1035-1038.

[68]

A. N. Tikhonov. Regularization of incorrectly posed problems. Soviet Math. Dokl., 4(1963): 1624-1627.

[69]

A. N. Tikhonov and V. Y. Arsenin. Solution of ill-posed problems. New York: Willey, 1977.

[70]

A. N. Tikhonov, A. V. Goncharsky,V. V. Stepanovand A. G. Yagola. Numerical Methods for the Solution of Ill-Posed Problems. Dordrecht: Kluwer Academic Publishers, 1995.

[71]

A. N. Tikhonov, A. S. Leonov and A. G. Yagola. Nonlinear Ill-Posed Problems (Vols. 1 and 2). London: Chapman and Hall, 1998.

[72]

G. M. Vainikko and A. Y. Veretennikov, Iterational Procedures in Ill-Posed Problems. New York: Wiley, 1985.

[73]

V. S. Vladimirov. Methods of the Theory of Generalized Functions. Anal. Methods Special Funct. 6. London: Taylor and Francis, 2002.

[74]

V. A. Vinokurov. On the error of the approximate solution of linear inverse problems. Soviet Mathem. Doklady, 248(1979): 1033-1037.

[75]

V. A. Vinokurov. The order of the error when computing a function with approximately specified argument. Comp. Math. and Math. Phys., 13(1973): 17-31.

[76]

X. Wang and R. O. Hansen. Inversion for magnetic anomalies of arbitrary three- dimensional bodies. Geophysics, 55 (1990): 1321-1326.

[77]

Y. D. Wang, Y. S. Yang, T. Q. Xiao, K. Y. Liu, B. Clennell, G. Q. Zhang and H. P. Wang. Synchrotron-based data-constrained modeling analysis of microscopic mineral distributions in limestone. Int. J. Geosci., 4(2013): 344-351.

[78]

Y. F. Wang and T. Y. Xiao. Fast realization algorithms for determining regularization pa-rameters in linear inverse problems. Inverse Problems, 17 (2001): 281-291.

[79]

Y. F. Wang. Computational Methods for Inverse Problems and Their Applications. Beijing: Higher Education Press, 2007.

[80]

Y. F. Wang, C. C. Yang and X. W. Li. A regularizing kernel-based BRDF model inversion method for ill-posed land surface parameter retrieval using smoothness constraint. Journal of Geophysical Research, 113 (2008): D13101.

[81]

Y. F. Wang, I. E. Stepnova, V. N. Titarenko and A. G. Yagola. Inverse Problems in Geophysics and Solution Methods. Beijing: Higher Education Press, 2011.

[82]

Y. F. Wang, A. G. Yagola and C. C. Yang (eds.), Optimization and Regularization for Computa-tional Inverse Problems and Applications. Berlin: Springer, 1st Edition., 2011

[83]

Y. F. Wang, A. G. Yagola and C. C. Yang (eds.), Computational Methods for Applied Inverse Problems. Series: Inverse and Ill-Posed Problems Series 56, Berlin: Walter de Gruyter, 2012.

[84]

Y. F. Wang, S. S. Luo, L. H. Wang, J. Q. Wang and C. Jin. Synchrotron radiation-based l1-norm regularization on micro-CT imaging in shale structure analysis. J. Inverse Ill-Posed Probl., 25(2016): 483-497.

[85]

Y. F. Wang, D. Lukyanenko and A. G. Yagola. Magnetic parameters inversion method with full tensor gradient data. Inverse Problems and Imaging, 13 (2019): 745-754.

[86]

Y. F. Wang, L. L. Rong, L. Q. Qiu, D. V. Lukyanenko and A. G. Yagola. Magnetic suscep-tibility inversion method with full tensor gradient data using low temperature SQUIDs. Petroleum Science, 16(2019): 794-807.

[87]

Y. F. Wang, V. T. Volkov and A. G. Yagola. Basic Theory of Inverse Problems - Integral Equations: Variational Analysis and Geoscience Applications. Beijing: Science Press, 2020.

[88]

A. G. Yagola and K. Y. Dorofeev. Sourcewise representation and a posteriori error estimates for ill-posed problems, in: Operator Theory and Its Applications (Winnipeg 1998), AMAST Ser. Comput. 25. Providence: American Mathematical Society, 543-550, 2000.

[89]

A. G. Yagola, Y. F. Wang, I. E. Stepanova and V. N. Titarenko, Inverse Problems and Recom-mended Solutions: Applications to Geophysics. Moscow: BINOM, 2014.

[90]

Y. P. Zhang and Y. F. Wang, Three-dimensional gravity-magnetic cross-gradient joint in-version based on structural coupling and a fast gradient method. Journal of Computational Mathematics, 37(2019): 758-777.

PDF (548KB)

332

Accesses

0

Citation

Detail

Sections
Recommended

/