Samarium redox catalysis

Rong Chen , Yike Bai , Baosheng Wei

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (4) : 62

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (4) :62 DOI: 10.20517/cs.2025.22
review-article

Samarium redox catalysis

Author information +
History +
PDF

Abstract

Samarium (Sm) is one of the most important rare earth elements that have flexible entry to dual oxidation states (+3 and +2) under standard laboratory conditions, which has made it extremely valuable in chemical synthesis. Sm(II) reagents are widely used as versatile and stoichiometric reductants in organic synthesis. However, the use of a huge amount of metal salts and organic solvents causes cost and environmental issues, making Sm(II) reagents not potentially applicable to large-scale or industrial reactions. Therefore, the development of samarium-catalyzed reactions involving Sm(III)/Sm(II) redox cycling is of great importance. In this review, we summarize the state-of-the-art research on samarium redox catalysis. The key step of the redox cycle is the Sm(III)-to-Sm(II) reduction, which has thus far been enabled by various methods that will be outlined.

Keywords

Samarium / redox catalysis / organic synthesis / reductive electrolysis / radical relay / photocatalysis

Cite this article

Download citation ▾
Rong Chen, Yike Bai, Baosheng Wei. Samarium redox catalysis. Chemical Synthesis, 2025, 5(4): 62 DOI:10.20517/cs.2025.22

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Marks T.Scandium, yttrium and the lanthanides and actinides. In: Comprehensive Organometallic Chemistry I. Amsterdam: Elsevier Inc;1982. p. 173-270.

[2]

Wei B,Chen R.Samarium and ytterbium reagents for carbonyl conversions. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier; 2024.

[3]

Girard P,Kagan HB.Divalent lanthanide derivatives in organic synthesis. 1. Mild preparation of samarium iodide and ytterbium iodide and their use as reducing or coupling agents.J Am Chem Soc1980;102:2693-8

[4]

Edmonds DJ,Procter DJ.Samarium(II)-iodide-mediated cyclizations in natural product synthesis.Chem Rev2004;104:3371-404

[5]

Szostak M,Parmar D.Cross-coupling reactions using samarium(II) iodide.Chem Rev2014;114:5959-6039

[6]

Heravi MM.Samarium(II) iodide-mediated reactions applied to natural product total synthesis.RSC Adv2022;12:9944-94 PMCID:PMC8965710

[7]

Gao Y.Samarium iodide-mediated C-C bond formation in the total synthesis of natural products.Nat Synth2022;1:275-88

[8]

Liu C,Liu Y.Recent development of samarium diiodide and other samarium reagents in organic transformation.Chin J Org Chem2021;41:2202

[9]

Maity S.Development in SmI2 catalyzed reactions.Eur J Org Chem2021;2021:5312-9

[10]

Nomura R,Endo T.Samarium iodide-catalyzed pinacol coupling of carbonyl compounds.J Am Chem Soc1996;118:11666-7

[11]

Aspinall HC,Valla C.Samarium diiodide-catalyzed diastereoselective pinacol couplings.Org Lett2005;7:1919-22

[12]

Maity S.Mechanistic Study and development of catalytic reactions of Sm(II).J Am Chem Soc2019;141:3207-16

[13]

Orsini F.Reformatsky reactions with SmI2 in catalytic amount.Tetrahedron Lett2005;46:1909-11

[14]

Corey E.Catalytic reactions of samarium (II) iodide.Tetrahedron Lett1997;38:2045-8

[15]

Hélion F.Mischmetall: an efficient and low cost coreductant for catalytic reactions of samarium diiodide.J Org Chem1999;64:2944-6

[16]

Lannou M,Namy JL.Some uses of mischmetall in organic synthesis.Tetrahedron2003;59:10551-65

[17]

Evans DA.Samarium-catalyzed intramolecular Tishchenko reduction of .beta.-hydroxy ketones. a stereoselective approach to the synthesis of differentiated anti 1,3-diol monoesters.J Am Chem Soc1990;112:6447-9

[18]

Zhou Z,Han X,Shen Q.Stereoselective Synthesis of Pyrano[3,2-c]- and Furano[3,2-c]quinolines: samarium diiodide-catalyzed one-pot Aza-Diels-Alder reactions.Eur J Org Chem2007;2007:5265-9

[19]

Röckl JL.Samarium and ytterbium in organic electrosynthesis.Synthesis2023;55:1375-84

[20]

Ware SD,Charboneau DJ,Reisman SE.Electrochemical preparation of Sm(II) reagent facilitated by weakly coordinating anions.Chemistry2023;29:e202301045

[21]

Léonard E,Périchon J.First samarium-catalysed coupling of aldehydes and ketones.J Chem Soc, Chem Commun1989;0:276-7

[22]

Hébri H,Heintz M,Périchon J.Samarium-catalyzed electrosynthesis of 1,2-diketones by the direct reductive dimerization of aromatic esters: a novel coupling reaction.Synlett1991;1991:901-2

[23]

Hebri H,Périchon J.Samarium-catalyzed electrochemical reduction of organic halides.Synth Commun1991;21:2377-82

[24]

Espanet B,Périchon J.SmCl3-catalyzed electrochemical cleavage of allyl ethers.Tetrahedron Lett1992;33:2485-8

[25]

Hebri H,Périchon J.SmCl3 -catalysed electrosynthesis of γ-butyrolactones from 3-chloroesters and carbonyl compounds.J Chem Soc, Chem Commun1993:499-500

[26]

Sahloul K,Requet A,Mellah M.A samarium “soluble” anode: a new source of SmI2 reagent for electrosynthetic application.Chemistry2012;18:11205-9

[27]

Sun L,Mellah M.Use of electrochemistry to provide efficient SmI2 catalytic system for coupling reactions.ACS Catal2013;3:2568-73

[28]

Zhang Y.Convenient electrocatalytic synthesis of azobenzenes from nitroaromatic derivatives using SmI2.ACS Catal2017;7:8480-6

[29]

Bazzi S,Schulz E,Mellah M.CO2 activation by electrogenerated divalent samarium for aryl halide carboxylation.Org Biomol Chem2019;17:8546-50

[30]

Bazzi S,Mellah M.Electrogenerated Sm(II)-catalyzed CO2 activation for carboxylation of benzyl halides.Org Lett2019;21:10033-7

[31]

Zhang Y.Samarium(II)-electrocatalyzed chemoselective reductive alkoxylation of phthalimides.Org Chem Front2022;9:1308-14

[32]

Huang H,Procter DJ.SmI2-catalysed cyclization cascades by radical relay.Nat Catal2019;2:211-8

[33]

Agasti S,McDouall JJW.SmI2-catalyzed intermolecular coupling of cyclopropyl ketones and alkynes: a link between ketone conformation and reactivity.J Am Chem Soc2021;143:3655-61 PMCID:PMC8028054

[34]

Agasti S,Pye E,Crisenza GEM.A catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres.Nat Chem2023;15:535-41

[35]

Mansell JI,Li M.Alkyl Cyclopropyl ketones in catalytic formal [3 + 2] cycloadditions: the role of SmI2 catalyst stabilization.J Am Chem Soc2024;146:12799-807

[36]

Huang HM,Morrill C.Catalytic cascade reactions by radical relay.Chem Soc Rev2019;48:4626-38

[37]

Romano C,Procter DJ.A blueprint for catalysis.Nat Chem2024;16:478

[38]

Chan AY,Bissonnette NB.Metallaphotoredox: the merger of photoredox and transition metal catalysis.Chem Rev2022;122:1485-542

[39]

Meyer AU,Heckel A.Lanthanide ions coupled with photoinduced electron transfer generate strong reduction potentials from visible light.Chemistry2017;23:7900-4

[40]

Jenks TC,Hovey JL.First use of a divalent lanthanide for visible-light-promoted photoredox catalysis.Chem Sci2018;9:1273-8 PMCID:PMC5890796

[41]

Tomar M,Kocsi D,Borbas KE.Photocatalytic generation of divalent lanthanide reducing agents.J Am Chem Soc2023;145:22555-62 PMCID:PMC10591332

[42]

Kuribara T,Matsuda Y.Visible-light-antenna ligand-enabled samarium-catalyzed reductive transformations.J Am Chem Soc2024;146:20904-12

[43]

Tomar M,Everaert J.Photocatalyst for visible-light-driven Sm(II)-mediated reductions.Org Lett2024;26:10752-6 PMCID:PMC11667727

[44]

Bhimpuria R,Thapper A,Borbas KE.Photocatalytic product-selective reduction of CO2, CO, and carbonates.Chem2025:102450

[45]

Bhimpuria R,Ye K.A Sm(II)-based catalyst for the reduction of dinitrogen, nitrite, and nitrate to ammonia or urea.Chem2025;11:102547

[46]

Johansen CM,Tarnopol DE.Photodriven Sm(III)-to-Sm(II) reduction for catalytic applications.J Am Chem Soc2024;146:25456-61 PMCID:PMC11421001

[47]

Boyd EA,Peters JC.Reductive samarium (electro)catalysis enabled by SmIII-alkoxide protonolysis.Science2024;385:847 PMCID:PMC11623448

[48]

Boyd EA,Peters JC.Samarium as a catalytic electron-transfer mediator in electrocatalytic nitrogen reduction to ammonia.J Am Chem Soc2025;147:4695-700 PMCID:PMC11826969

AI Summary AI Mindmap
PDF

200

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/