Supported noble metal catalysts for complete propane oxidation: structure-activity relationships and reaction mechanisms

Shasha Ge , Aiyong Wang , Yanglong Guo , Wangcheng Zhan , Li Wang , Yun Guo , Xuan Tang

Chemical Synthesis ›› 2026, Vol. 6 ›› Issue (1) : 8

PDF
Chemical Synthesis ›› 2026, Vol. 6 ›› Issue (1) :8 DOI: 10.20517/cs.2025.107
Review

Supported noble metal catalysts for complete propane oxidation: structure-activity relationships and reaction mechanisms

Author information +
History +
PDF

Abstract

Volatile organic compounds are important precursors of air pollution and photochemical smog, and they pose potential risks to human health and the ecological environment. Among them, propane is particularly challenging to eliminate due to its stable chemical nature. The catalytic oxidation of propane offers a promising strategy to tackle this pressing environmental issue and serves as an excellent model reaction for investigating the C–H and C–C bond activation and oxygen redox processes on supported noble metal catalysts. In this review, we focus on commonly used supported noble metal catalysts and systematically discuss how the chemical state, particle size, support type, addition of promoters, and metal-support interactions influence the catalytic performance in complete propane oxidation. Subsequently, the thermal stability of different noble metal catalysts is summarized. We then provide an overview of the common propane oxidation mechanisms reported in the literature, including Langmuir-Hinshelwood, Eley-Rideal, and Mars-van Krevelen mechanisms. Finally, we summarize and prospect the precise regulation of noble metal-support interface and the application of newly developed electrothermal catalytic technologies for highly efficient propane oxidation, guiding the design of future high-performance catalysts. This review aims to provide mechanistic insights and design principles bridging fundamental catalysis and practical oxidation applications.

Keywords

Noble metal / supported / propane oxidation / catalysis / reaction mechanisms

Cite this article

Download citation ▾
Shasha Ge, Aiyong Wang, Yanglong Guo, Wangcheng Zhan, Li Wang, Yun Guo, Xuan Tang. Supported noble metal catalysts for complete propane oxidation: structure-activity relationships and reaction mechanisms. Chemical Synthesis, 2026, 6(1): 8 DOI:10.20517/cs.2025.107

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu S,Huang Z,Shen W.O-vacancy-rich porous MnO2 nanosheets as highly efficient catalysts for propane catalytic oxidation.Appl Catal B Environ2022;312:121387

[2]

Li YY,He J,Li JR.Recent advances of the effect of H2O on VOC oxidation over catalysts: influencing factors, inhibition/promotion mechanisms, and water resistance strategies.Environ Sci Technol2025;59:1034-59

[3]

Wang L,Gong Z.Boosting low-temperature activity and high water-tolerance of CoxCey catalysts on propane catalytic oxidation: insights of the Ce corporation.Appl Surf Sci2025;714:164386

[4]

Guo X,Gao M.Highly efficient Ag/Ce–Zr catalyst for catalytic oxidation of NVOCs: balance of redox ability and acidity.Rare Met2024;43:6473-85

[5]

Zhang H,Wei L,Dai H.Recent progress on VOC pollution control via the catalytic method.Chin J Catal2024;61:71-96

[6]

Lou B,Adeel M.Catalytic oxidation of volatile organic compounds by non-noble metal catalyst: current advancement and future prospectives.J Clean Prod2022;363:132523

[7]

Zhao J,Duan W.Emission factors of environmentally persistent free radicals in PM2.5 from rural residential solid fuels combusted in a traditional stove.Sci Total Environ2021;773:145151

[8]

Lewis AC,Marriott PJ.A larger pool of ozone-forming carbon compounds in urban atmospheres.Nature2000;405:778-81

[9]

Ge S,Guo Y,Soler L.Mechanochemically activated Au/CeO2 for enhanced CO oxidation and COPrOX reaction.Appl Mater Today2023;33:101857

[10]

Pei J,Xu G.Nanocatalyst engineering via metal ion doping: regulating rate-determining steps for stable ozone decomposition.ACS Appl Nano Mater2025;8:21902-11

[11]

Liang B,Bai D.Emissions of non-methane hydrocarbons and typical volatile organic compounds from various grate-firing coal furnaces.Atmos Pollut Res2022;13:101380

[12]

Sun J,Zhang L.Volatile organic compounds emissions from traditional and clean domestic heating appliances in Guanzhong Plain, China: emission factors, source profiles, and effects on regional air quality.Environ Int2019;133:105252

[13]

Hussain MS,Mishra R.Unlocking the secrets: volatile organic compounds (VOCs) and their devastating effects on lung cancer.Pathol Res Pract2024;255:155157

[14]

Yang C,Pi Y.Abatement of various types of VOCs by adsorption/catalytic oxidation: a review.Chem Eng J2019;370:1128-53

[15]

Ren Y,Peng Y.Characterization of VOC emissions and health risk assessment in the plastic manufacturing industry.J Environ Manage2024;357:120730

[16]

Sadegh F,Wongniramaikul W,Choodum A.Adsorption of volatile organic compounds on biochar: a review.Process Saf Environ Prot2024;182:559-78

[17]

Moreira MT,Feijoo G.The prospective use of biochar as adsorption matrix - a review from a lifecycle perspective.Bioresour Technol2017;246:135-41

[18]

Wu Z,Zhao Z.Efficient removal of VOCs enabled by triboelectric-photocatalytic coupling effect.Nano Energy2024;132:110364

[19]

Yang Y,Cui L.Recent advancement and future challenges of photothermal catalysis for VOCs elimination: From catalyst design to applications.Green Energy Environ2023;8:654-72

[20]

Li J,Cai S.Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light.Appl Catal B Environ2019;240:141-52

[21]

Liu Y,Tang X.Insight into the roles of Pd state and CeO2 property in C3H8 catalytic oxidation on Pd/CeO2.Appl Surf Sci2022;605:154675

[22]

Zhao Q,Song C.Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation.Appl Catal B Environ2020;265:118552

[23]

Li G,Sun Y.Efficient defect engineering in Co-Mn binary oxides for low-temperature propane oxidation.Appl Catal B Environ2021;282:119512

[24]

Zhang K,Pan W.Research progress of a composite metal oxide catalyst for VOC degradation.Environ Sci Technol2022;56:9220-36

[25]

Xu L,Wen C.Mechanistic understanding of oxygen spillover enables efficient propane combustion over Pt/AlSOx catalyst.Sep Purif Technol2025;354:129193

[26]

Mu Y,Yang Y.Synthesis, characterization and application of copper-ceria catalysts for catalytic elimination of air pollutants: a review.J Rare Earths2025;In Press:

[27]

Zhang W,Giroir-fendler A.Co3O4-based catalysts for propane total oxidation: a state-of-the-art minireview.Appl Catal B Environ2023;337:122908

[28]

Liotta L.Catalytic oxidation of volatile organic compounds on supported noble metals.Appl Catal B Environ2010;100:403-12

[29]

Yoshida H,Hattori T.Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion.Catal Today2003;87:19-28

[30]

Huang Z,Yang X.Highly efficient oxidation of propane at low temperature over a Pt-based catalyst by optimization support.Environ Sci Technol2022;56:17278-87

[31]

Ma X,Liu Y.A-site cation exfoliation of amorphous SmMnxOy oxides for low temperature propane oxidation.J Catal2022;409:59-69

[32]

Dong J,Zhang Y,Jin Q.Insights into the CeO2 facet-depended performance of propane oxidation over Pt-CeO2 catalysts.J Catal2022;407:174-85

[33]

Wang Y,Zeng K.Revealing the strong interaction effect of MnO nanoparticles and Nb2O5 supports with variable morphologies on catalytic propane oxidation.Appl Surf Sci2022;576:151797

[34]

Tan B,Sun L.Ionic liquid-modulated synthesis of MnO2 nanowires for promoting propane combustion: microstructure engineering and regulation mechanism.Colloids Surf A Physicochem Eng Asp2023;656:130431

[35]

Song X,Gao P.Unveiling the remarkable catalytic performance of Al2O3@Cu‐Ce core–shell nanofiber catalyst for carbonyl sulfide hydrolysis at low temperature.EcoEnergy2025;3:e70011

[36]

Chu S,Feng F.A review of noble metal catalysts for catalytic removal of VOCs.Catalysts2022;12:1543

[37]

Meng F,Kadja GT.A systematic review with improving activity and stability in VOCs elimination by oxidation of noble metals: starting from active sites.Sep Purif Technol2025;354:129222

[38]

Liu Y,Xie S,Dai H.Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts.Chin J Catal2016;37:1193-205

[39]

You Y,Lv Y.Constructing tri-coordinated Al (AlIII) sites to boost complete propane oxidation of the Pt/Al2O3 catalyst.Catal Sci Technol2024;14:4058-67

[40]

Zhao P,Liao W.Understanding the role of NbOx on Pt/Al2O3 for effective catalytic propane oxidation.Ind Eng Chem Res2019;58:21945-52

[41]

Li X,Liao W.Synergistic roles of Pt0 and Pt2+ species in propane combustion over high-performance Pt/AlF3 catalysts.Appl Surf Sci2019;475:524-31

[42]

Cen B,Zhao P.Revealing the different roles of sulfates on Pt/Al2O3 catalyst for methane and propane combustion.Catal Lett2022;152:863-71

[43]

Wang H,Liu K.W single-atom-engineered acid sites over Pt/Al2O3 catalysts to boost propane oxidation activity.ACS Sustainable Chem Eng2025;13:15050-61

[44]

Bailey LA,Davies TE,Taylor SH.Controlling palladium particle size and dispersion as a function of loading by chemical vapour impregnation: an investigation using propane total oxidation as a model reaction.Catal Sci Technol2024;14:5045-53

[45]

Liang P,Wang Q.Improved catalytic oxidation of propane over phosphate-modified Pd/Al2O3-TiO2 catalyst.J Environ Chem Eng2023;11:109569

[46]

Liu W,Zhang Q.Insights into flower-like Al2O3 spheres with rich unsaturated pentacoordinate Al3+ sites stabilizing Ru-CeOx for propane total oxidation.Appl Catal B Environ2021;292:120171

[47]

Adamska K,Tylus W.Stable bimetallic Ru-Mo/Al2O3 catalysts for the light alkane combustion: effect of the Mo addition.Appl Catal B Environ2019;246:180-94

[48]

Xu A,Yu A.Breaking the trade-off between Pt chemical state and active site density by SiOx engineering on Pt/TiO2 for complete propane oxidation.Appl Catal B Environ Energy2026;382:125958

[49]

Fang Y,Zhang Q.Oxygen vacancy-governed opposite catalytic performance for C3H6 and C3H8 combustion: the effect of the Pt electronic structure and chemisorbed oxygen species.Environ Sci Technol2022;56:3245-57

[50]

Yu Z,Pan C.Construction of electron-enriched Ptδ+ with reactive oxygen species for enhanced propane catalytic combustion.ACS Appl Mater Interfaces2025;17:21246-56

[51]

Huang L,Gao B.Deep oxidation of propane over PtIr/TiO2 bimetallic catalysts: mechanistic investigation of promoting roles of Ir species.Appl Surf Sci2023;638:158149

[52]

Dong J,Li S.Local environment and electronic structure of Pt-TiO2 catalysts define the reactivity of CO oxidation and C3H8 combustion: the crystal phase of TiO2 determining.ACS Catal2025;15:15794-807

[53]

Camposeco R,Zanella R.Catalytic oxidation of propane and carbon monoxide by Pd nanoparticles on Mn/TiO2 catalysts.Catal Lett2024;154:155-69

[54]

Camposeco R,Torres AE,Zanella R.Highly active Ru/TiO2 nanostructures for total catalytic oxidation of propane.Environ Sci Pollut Res Int2023;30:98076-90 PMCID:PMC10495525

[55]

Tang X,Lv Y.Blocking the operando formation of single-atom spectators by interfacial engineering.Angew Chem Int Ed Engl2025;64:e202505507

[56]

Ge S,Tang X.Revealing the size effect of ceria nanocube-supported platinum nanoparticles in complete propane oxidation.ACS Catal2024;14:2532-44

[57]

Huang Z,Yu J.Total oxidation of light alkane over phosphate-modified Pt/CeO2 catalysts.Environ Sci Technol2022;56:9661-71

[58]

Ge S,Tang X.Preformed Pt nanoparticles supported on nanoshaped CeO2 for total propane oxidation.ACS Appl Nano Mater2023;6:15073-84 PMCID:PMC10464920

[59]

Gao B,Wang Y,Liu P.On the structure insensitivity of propane total oxidation over Pt/CeO2: a comparison between single atoms, clusters and nanoparticles.ChemCatChem2023;15:e202301160

[60]

Xia L,Liu Q.Boosted light alkane deep oxidation via metal bond length modulation-induced C-C bond preferential activation.Environ Sci Technol2024;58:3472-82

[61]

Liu Y,Yang J.Understanding the three-way catalytic reaction on Pd/CeO2 by tuning the chemical state of Pd.Appl Surf Sci2021;556:149766

[62]

Wang A,Li M.Robust Ru/Ce@Co catalyst with an optimized support structure for propane oxidation.Environ Sci Technol2024;58:12742-53

[63]

Sun Y,Ding J.Regulating the spatial distribution of Ru nanoparticles on CeO2 support for enhanced propane oxidation.ACS Appl Nano Mater2022;5:3937-45

[64]

Yan J,Ding M.Highly efficient Ru/CeO2 catalyst using colloidal chemical method for propane oxidation.Chem Eng J2024;500:156936

[65]

Wang Z,Brosnahan JT.Ru/CeO2 catalyst with optimized CeO2 support morphology and surface facets for propane combustion.Environ Sci Technol2019;53:5349-58

[66]

Enterkin JA,Elam JW.Propane oxidation over Pt/SrTiO3 nanocuboids.ACS Catal2011;1:629-35

[67]

Bal’zhinimaev BS,Kaichev VV,Zaikovskii VI.Catalytic abatement of VOC over novel Pt fiberglass catalysts.Top Catal2017;60:73-82

[68]

Shan S,Maswadeh Y.Surface oxygenation of multicomponent nanoparticles toward active and stable oxidation catalysts.Nat Commun2020;11:4201 PMCID:PMC7443134

[69]

O’brien CP,Dong H,Lee IC.Deactivation of Pt/Al2O3 during propane oxidation at low temperatures: kinetic regimes and platinum oxide formation.J Catal2016;337:122-32

[70]

Liu Y,Liao W.Highly active Pt/BN catalysts for propane combustion: the roles of support and reactant-induced evolution of active sites.ACS Catal2019;9:1472-81

[71]

Peng Q,Han W,Tang Z.Tailored Pt/NiaCobAlOx catalysts derived from LDH structure for efficient catalytic combustion of propane.Chem Eng J2024;500:157181

[72]

Dun Y,Xu J.Pt0-MnSO4 active centers on modified SmMn2O5 mullite oxides for efficient propane oxidation.Appl Catal B Environ Energy2025;371:125223

[73]

Avila M,Apesteguía C.Effect of support on the deep oxidation of propane and propylene on Pt-based catalysts.Chem Eng J2014;241:52-9

[74]

Yazawa Y,Hattori T.The support effect on platinum catalyst under oxidizing atmosphere: improvement in the oxidation-resistance of platinum by the electrophilic property of support materials.Appl Catal A Gen2002;237:139-48

[75]

Yazawa Y,Komai S.The additive effect on propane combustion over platinum catalyst: control of the oxidation-resistance of platinum by the electronegativity of additives.Appl Catal A Gen2002;233:113-24

[76]

Wang W,Yu H.Insights into different reaction behaviors of propane and CO oxidation over Pt/CeO2 and Pt/Nb2O5: the crucial roles of support properties.J Phys Chem C2021;125:19301-10

[77]

Xian Y,Wen C.Boosting propane combustion on dual active sites of Pt/WO3 through regulating Pt sites and activating propane on WO3 surface.Fuel2025;385:134172

[78]

Wen C,Hao Y.Individual functionality and synergistic effects of redox site–acid site in propane oxidation.ACS Catal2025;15:10746-57

[79]

Luo H,Weng D,Ran R.A novel insight into enhanced propane combustion performance on PtUSY catalyst.Rare Met2017;36:1-9

[80]

Park JE,Kim Y,Park ED.Effect of Pt particle size on propane combustion over Pt/ZSM-5.Catal Lett2013;143:1132-8

[81]

Lykhach Y,Skála T.Counting electrons on supported nanoparticles.Nat Mater2016;15:284-8

[82]

Jeong H,Kim B.Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts.Nat Catal2020;3:368-75

[83]

Shao C,You Y.Regulating the selective dispersion of tungsten oxide to promote propane combustion on Pt-nanoparticle catalysts supported on WOx/ZrO2 by tuning the zirconia crystal phase.ACS Appl Nano Mater2022;5:13482-97

[84]

Liao W,Cen B.Deep oxidation of propane over WO3-promoted Pt/BN catalysts: the critical role of Pt-WO3 interface.Appl Catal B Environ2020;272:118858

[85]

Wen C,Zhao W.Novel strategy to regulate the geometric and electronic structure of Pt catalyst for efficient propane combustion.Appl Catal A Gen2024;680:119778

[86]

Zhou Q,Xian Y.Synergistic catalysis of Pt-acid sites on Al2O3-AlPO4 hybrids for enhanced propane combustion.Fuel2026;405:136540

[87]

Shao C,Zhang L.Boosting propane purification on Pt/ZrOSO4 nanoflowers: insight into the roles of different sulfate species in synergy with Pt.Sep Purif Technol2023;304:122367

[88]

Xu L,Luo X.Regulating the synergy of sulfate and Pt species in Pt/ZSM-5 for propane complete oxidation.Appl Catal B Environ Energy2024;354:124135

[89]

Gawthrope DE,Wilson K.Support-mediated alkane activation over Pt–SO4/Al2O3 Catalysts.Catal Lett2004;94:25-9

[90]

Wang B,Ran R,Weng D.Participation of sulfates in propane oxidation on Pt/SO42-/CeO2–ZrO2 catalyst.J Mol Catal A Chem2012;361-362:98-103

[91]

Huang L,Xu L,Lu J.Towards the promoting roles of SO2 in total oxidation of propane over Pt catalysts.Sep Purif Technol2025;355:129759

[92]

Hao H,Liu W,Yin F.Robust Pt@TiOx/TiO2 catalysts for hydrocarbon combustion: effects of Pt-TiOx interaction and sulfates.ACS Catal2020;10:13543-8

[93]

Tan W,Cai Y.Surface lattice-embedded Pt single-atom catalyst on ceria-zirconia with superior catalytic performance for propane oxidation.Environ Sci Technol2023;57:12501-12

[94]

Zhang B,Li L.Ultra-stable low-coordinated PtSA/CeZrO2 ordered macroporous structure integrated industrial-scale monolithic catalysts for high-temperature oxidation.Nat Commun2025;16:7847 PMCID:PMC12373748

[95]

Liu Y,Wang Y,Zhang S.Strong metal-support interactions between Pt and CeO2 for efficient methanol decomposition.Chem Eng J2023;475:146219

[96]

Tang X,Yang Q.Significance of epitaxial growth of PtO2 on rutile TiO2 for Pt/TiO2 catalysts.J Am Chem Soc2024;146:3764-72

[97]

You Y,Tang X.Refining metal–support interactions via surface modification of irreducible oxide support for enhanced complete propane oxidation.ACS Catal2024;14:11457-67

[98]

Duan H,Bi X.Catalytic combustion of methane over noble metal catalysts.ACS Catal2024;14:17972-92

[99]

Van den Bossche, M.; Grönbeck, H. Methane oxidation over PdO(101) revealed by first-principles kinetic modeling.J Am Chem Soc2015;137:12035-44

[100]

Chin YH,Neurock M.Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts.J Am Chem Soc2013;135:15425-42

[101]

Kim KB,Kim YH,Park ED.Propane combustion over supported Pd catalysts.Res Chem Intermed2010;36:603-11

[102]

You R,Cao T,Si R.Synthesis in a glovebox: utilizing surface oxygen vacancies to enhance the atomic dispersion of palladium on ceria for carbon monoxide oxidation and propane combustion.ACS Appl Nano Mater2018;1:4988-97

[103]

Khan HA,de Freitas AS,Tall OE.Performance studies of Pt, Pd and PtPd supported on SBA-15 for wet CO and hydrocarbon oxidation.Catal Today2024;426:114370

[104]

Hu Z,Meng D,Guo Y.Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation.ACS Catal2016;6:2265-79

[105]

Li M,Wan J,Ran R.Pd–Ce0.33Zr0.67O2–Al2O3 catalyst for propane oxidation: interactions between the precious metal and support under the hydrothermal ageing.Catal Today2015;242:322-8

[106]

Peng H,Yang S.Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes.Nat Commun2022;13:295 PMCID:PMC8758710

[107]

Khudorozhkov AK,Bukhtiyarov AV,Bukhtiyarov VI.Propane oxidation over Pd/Al2O3: kinetic and in situ XPS study.Top Catal2017;60:190-7

[108]

Zhou R,Wang S,Jin L.CO and C3H8 total oxidation over Pd/La-Al2O3 catalysts: effect of calcination temperature and hydrothermal treatment.J Rare Earths2014;32:621-7

[109]

Li M,Wu X,Wang B.Importance of re-oxidation of palladium by interaction with lanthana for propane combustion over Pd/Al2O3 catalyst.Catal Today2013;201:19-24

[110]

Yan J,Guo Y,Dai Q.Comparisons on thermal and water-resistance of Ru and Pd supported on cobalt-doped alumina nanosheets for catalytic combustion of propane.Appl Catal A Gen2021;628:118398

[111]

Taylor MN,Garcia T.Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane.J Catal2012;285:103-14

[112]

Okal J,Krajczyk L.Light alkane oxidation over Ru supported on ZnAl2O4, CeO2 and Al2O3.Catal Today2011;176:173-6

[113]

Xia H,Niu Q.Support-dependent activity and thermal stability of Ru-based catalysts for catalytic combustion of light hydrocarbons.Ind Eng Chem Res2023;62:1826-38

[114]

Hu Z,Guo Y.Total oxidation of propane over a Ru/CeO2 catalyst at low temperature.Environ Sci Technol2018;52:9531-41

[115]

Wu J,Yan J.Ultra-active Ru supported on CeO2 nanosheets for catalytic combustion of propane: experimental insights into interfacial active sites.Chem Eng J2022;438:135501

[116]

Okal J.The interaction of oxygen with high loaded Ru/γ-Al2O3 catalyst.Mater Res Bull2009;44:318-23

[117]

Okal J,Tylus W.Microstructure characterization and propane oxidation over supported Ru nanoparticles synthesized by the microwave-polyol method.Appl Catal B Environ2011;101:548-59

[118]

Zhang Q,Xu A.C3H8 oxidation on atomic-scale catalysts: insights into active oxygen species and reaction pathways.J Hazard Mater2025;494:138716

[119]

Deng W,Huang J.Combustion of propane over various metals doped CeO2 nanosheet supported ruthenium catalysts.J Environ Chem Eng2025;13:116264

[120]

Deng W,Chen B.Catalytic combustion of propane over second metal-modified Ru supported on CeO2 nanosheet.Sep Purif Technol2025;356:129874

[121]

Ge H,Fan J,Li R.Pt–Co separation for enhancing bimetallic catalysis in selective hydrogenation reaction.ACS Catal2025;15:16740-7

[122]

Huang Z,Li W.Optimising PtFe nanoparticle structure to enhance catalytic activity and stability for propane oxidation.Appl Catal B Environ2024;340:123198

[123]

Tsui CJ,Tay Y.Highly durable Pt–Ru-doped Ce0.9Zr0.1O2 as an effective dual catalyst for low-temperature simultaneous propane and carbon monoxide oxidation.J Phys Chem C2022;126:9334-51

[124]

Chen J,Xu W,Chen J.Utilizing Cl coordination to facilitate Ru-Ag self-assembling into alloy and recover thermally-inactivated catalyst for propane combustion.Appl Catal B Environ2021;290:119989

[125]

Baranowska K.Bimetallic Ru-Re/γ-Al2O3 catalysts for the catalytic combustion of propane: effect of the Re addition.Appl Catal A Gen2015;499:158-67

[126]

Baranowska K.Performance and stability of the Ru–Re/γ-Al2O3 catalyst in the total oxidation of propane: influence of the order of impregnation.Catal Lett2016;146:72-81

[127]

Yazawa Y,Takagi N.Acid strength of support materials as a factor controlling catalytic activity of noble metal catalysts for catalytic combustion.Stud Surf Sci Catal2000;130:2189-94

[128]

Wettergren K,Deiana D.High sintering resistance of size-selected platinum cluster catalysts by suppressed Ostwald ripening.Nano Lett2014;14:5803-9

[129]

Yuan W,Ou Y.Direct in situ TEM visualization and insight into the facet-dependent sintering behaviors of gold on TiO2.Angew Chem Int Ed Engl2018;57:16827-31

[130]

Hu S.Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts.Science2021;374:1360-5

[131]

Xiong H,Goetze J.Thermally stable and regenerable platinum-tin clusters for propane dehydrogenation prepared by atom trapping on ceria.Angew Chem Int Ed Engl2017;56:8986-91 PMCID:PMC5697674

[132]

Cargnello M,Hernández Garrido JC.Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3.Science2012;337:713-7

[133]

Goodman ED,Dietze EM.Catalyst deactivation via decomposition into single atoms and the role of metal loading.Nat Catal2019;2:748-55

[134]

Okal J.Influence of catalyst pretreatments on propane oxidation over Ru/γ-Al2O3.Catal Lett2009;132:225-34

[135]

Okal J.Combustion of propane over novel zinc aluminate-supported ruthenium catalysts.Appl Catal B Environ2011;105:182-90

[136]

Wang J,Xu H.Elucidating confinement and microenvironment of Ru clusters stably confined in MFI zeolite for efficient propane oxidation.Angew Chem Int Ed Engl2025;64:e202417618

[137]

Tao J,Zhao Y.Elucidating the role of confinement and shielding effect over zeolite enveloped Ru catalysts for propane low temperature degradation.Chemosphere2022;302:134884

[138]

Okal J,Kraszkiewicz P.Ru/CeO2 catalysts for combustion of mixture of light hydrocarbons: effect of preparation method and metal salt precursors.Appl Catal A Gen2018;549:161-9

[139]

Dinhová TN,Piliai L.Unraveling the effects of reducing and oxidizing pretreatments and humidity on the surface chemistry of the Ru/CeO2 catalyst during propane oxidation.J Phys Chem C Nanomater Interfaces2025;129:1746-57 PMCID:PMC11770751

[140]

Bezkrovnyi O,Pawlyta M.In situ observation of highly oxidized Ru species in Ru/CeO2 catalyst under propane oxidation.J Mater Chem A2022;10:16675-84

[141]

Wang Y,Wang W.Unveiling the self-activation of exsolved LaFe0.9Ru0.1O3 perovskite during the catalytic total oxidation of propane.Chin J Catal2023;54:250-64

[142]

Wang Y,Pielsticker L.Boosting Ru atomic efficiency of LaFe0.97Ru0.03O3 via knowledge-driven synthesis design.Chem Sci2025;16:7739-50 PMCID:PMC11973924

[143]

Gao B,Xia H.Thermally reconstructed Ru/La-Co3O4 nanosheets with super thermal stability for catalytic combustion of light hydrocarbons: induced surface LaRuO3 active phase.Adv Sci2025;12:e2414919 PMCID:PMC12079328

[144]

Debecker DP,Gaigneaux EM,Sassoye C.Total oxidation of propane with a nano-RuO2/TiO2 catalyst.Appl Catal A Gen2014;481:11-8

[145]

Kim A,Devred F,Sanchez C.CO2 methanation on Ru/TiO2 catalysts: on the effect of mixing anatase and rutile TiO2 supports.Appl Catal B Environ2018;220:615-25

[146]

Ledwa KA,Ptak M.Ru0.05Ce0.95O2-y deposited on functionalized alumina as a smart catalyst for propane oxidation.Appl Catal B Environ2020;274:119090

[147]

Ledwa KA,Kępiński L.RuxCe1-xO2-y nanoparticles deposited on functionalized γ-Al2O3 as a thermally stable oxidation catalyst.Appl Catal B Environ2018;230:135-44

[148]

Zhang D,Chen X,Huang B.High-entropy alloy metallene for highly efficient overall water splitting in acidic media.Chin J Catal2023;45:174-83

[149]

Zhang D,Wu X.Multi‐site electrocatalysts boost pH‐universal nitrogen reduction by high‐entropy alloys.Adv Funct Mater2021;31:2006939

[150]

Gao Y,Yang L,Tian FX.Recent progress of catalytic methane combustion over transition metal oxide catalysts.Front Chem2022;10:959422 PMCID:PMC9393236

[151]

Guo Y,Li G.Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review.Appl Catal B Environ2021;281:119447

[152]

Ma L,Chen X,Li J.Reaction mechanism of propane oxidation over Co3O4 nanorods as rivals of platinum catalysts.Chem Eng J2020;402:125911

[153]

Liu L,Dong F,Tang Z.Designing ordered mesoporous confined Pt/Ti0.1AlOy catalysts for the catalytic combustion of propane.New J Chem2023;47:5519-33

[154]

Dong T,Ma M.Hierarchical zeolite enveloping Pd-CeO2 nanowires: an efficient adsorption/catalysis bifunctional catalyst for low temperature propane total degradation.Chem Eng J2020;393:124717

[155]

Wang M,Wang S.Catalytic oxidation of propane over nanorod-like TiO2 supported Ru catalysts: structure-activity dependence and mechanistic insights.Chem Eng J2024;481:148344

[156]

Liu W,Zhao Y.Boosting the deep oxidation of propane over zeolite encapsulated Rh-Mn bimetallic nanoclusters: elucidating the role of confinement and synergy effects.J Catal2022;413:201-13

[157]

Mei X,Zhang Y.Decreasing the catalytic ignition temperature of diesel soot using electrified conductive oxide catalysts.Nat Catal2021;4:1002-11

[158]

Tao S,Rao C.A smart catalytic system with in situ dynamic current‐tuned Pd‐Ce diatomic interactions for enhanced methane oxidation.Adv Funct Mater2025;e19202

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/