Recent advances of single-atom catalysts in the selective catalytic reduction of NO by CO

Liu Yang , Jing Li , Baodan Liu

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (4) : 77

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (4) :77 DOI: 10.20517/cs.2025.10
review-article

Recent advances of single-atom catalysts in the selective catalytic reduction of NO by CO

Author information +
History +
PDF

Abstract

This review summarizes the advances and applications of single-atom catalysts (SACs) in the selective catalytic reduction of NO by CO (CO-SCR). Various types of SACs are discussed, including conventional SACs, negatively charged SACs, dual-atom catalysts, singly dispersed bimetallic sites catalysts, single-atom alloy catalysts, and single-atom-cluster/nanoparticle catalysts. The unique properties of each type of catalyst and their catalytic performance in CO-SCR are explored. SACs enhance the adsorption and activation of NO through synergistic interactions with the support, thereby improving catalytic activity and optimizing the reaction pathway. Furthermore, tuning atomic structure, coordination environment, and metal-support interactions can further enhance the catalytic performance. Despite showing excellent catalytic activity under laboratory conditions, SACs still face challenges in industrial applications, such as catalyst stability, scalability and resistance to poisoning. Future research will focus on improving SAC stability, increasing the density of active sites, and enhancing resistance to deactivation. Combining advanced synthesis methods, large-scale production techniques, and in-depth structural characterization will be crucial for the industrial application of SACs in environmental and energy-related fields.

Keywords

Single-atom catalysts / selective catalytic reduction / NO reduction with CO / catalytic activity

Cite this article

Download citation ▾
Liu Yang, Jing Li, Baodan Liu. Recent advances of single-atom catalysts in the selective catalytic reduction of NO by CO. Chemical Synthesis, 2025, 5(4): 77 DOI:10.20517/cs.2025.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Richter A,Nüss H,Niemeier U.Increase in tropospheric nitrogen dioxide over China observed from space.Nature2005;437:129-32

[2]

Han L,Gao M.Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects.Chem Rev2019;119:10916-76

[3]

Wang Y,Liu H,Zhu T.Catalytic removal of gaseous pollutant NO using CO: catalyst structure and reaction mechanism.Environ Res2024;246:118037

[4]

Zhang R,Lei Z.Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts.Chem Rev2016;116:3658-721

[5]

Beale AM,Lezcano-Gonzalez I,Szanyi J.Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials.Chem Soc Rev2015;44:7371-405

[6]

Li G,Ma Z.An anti-poisoning defective catalyst without metal active sites for NH 3 -SCR via in situ stabilization.EES Catal2023;1:134-43

[7]

Feng S,Shen B.An overview of the deactivation mechanism and modification methods of the SCR catalysts for denitration from marine engine exhaust.J Environ Manage2022;317:115457

[8]

Skalska K,Ledakowicz S.Trends in NOx abatement: a review.Sci Total Environ2010;408:3976-89

[9]

Lu Y,Lin F,Wang Y.Single-atom automobile exhaust catalysts.ChemNanoMat2020;6:1659-82

[10]

Liu Y,Lee J.Conventional and new materials for selective catalytic reduction (SCR) of NOx.ChemCatChem2018;10:1499-511

[11]

Javed MT,Gibbs BM.Control of combustion-generated nitrogen oxides by selective non-catalytic reduction.J Environ Manage2007;83:251-89

[12]

Heck RM.Catalytic abatement of nitrogen oxides-stationary applications.Catal Today1999;53:519-23

[13]

Xu G,Cheng X,Fang B. A review of Mn-based catalysts for low-temperature NH3-SCR: NOx removal and H2O/SO2 resistance. Nanoscale 2021;13:7052-80.[DOI:10.1039/d1nr00248a] Caution!

[14]

Xie R,Li Z,Yan N.Review of sulfur promotion effects on metal oxide catalysts for NOx emission control.ACS Catal2021;11:13119-39

[15]

Ye B,Lee MJ.Recent trends in vanadium-based SCR catalysts for NOx reduction in industrial applications: stationary sources.Nano Converg2022;9:51 PMCID:PMC9675887

[16]

Chen D,Guo A.Mechanistic insights into the promotion of low-temperature NH3-SCR catalysis by copper auto-reduction in Cu-zeolites.Appl Catal B Environ2023;322:122118

[17]

Zhang N,Li Q.Enhanced selective catalytic reduction of NO with NH3 over homoatomic dinuclear sites in defective α-Fe2O3.Chem Eng J2021;426:131845

[18]

Liu Q,Zhang S.Flattened Pt clusters constructed on CeO2 for efficient selective oxidation of NH3.Appl Catal B Environ Energy2025;365:124877

[19]

Zhang N,Wang D.Challenges and opportunities for manganese oxides in low-temperature selective catalytic reduction of NOx with NH3: H2O resistance ability.J Solid State Chem2020;289:121464

[20]

Cheng K,Zhao Z,Jiang G.Direct synthesis of V-W-Ti nanoparticle catalysts for selective catalytic reduction of NO with NH3.RSC Adv2015;5:45172-83

[21]

Zhang Z,Luo W,Li J.Mesh-supported V2O5-WO3/TiO2 nanosheet array catalysts for efficient removal of NOx.Tungsten2025;7:100-11

[22]

Hu W,Liu X.SO2- and H2O-tolerant catalytic reduction of NOx at a low temperature via engineering polymeric VOx species by CeO2.Environ Sci Technol2022;56:5170-8

[23]

Liu H,Ou H.The contradictory impact of sulfation on a CeOx/TiO2 NH3-SCR catalyst: a combined experimental and DFT study.Energy Fuels2023;37:6674-82

[24]

Bian M,Zheng D.Metal-free β zeolite used as an efficient NH3-SCR catalyst can achieve complete immunity to SO2: unique design strategy of sulfur-resistant catalyst.Chem Eng J2024;481:148563

[25]

Luo N,Liu H.Hierarchical structured Ti-doped CeO2 stabilized CoMn2O4 for enhancing the low-temperature NH3-SCR performance within highly H2O and SO2 resistance.Appl Catal B Environ2024;343:123442

[26]

Chen Y,Wang P.Challenges and perspectives of environmental catalysis for NOx reduction.JACS Au2024;4:2767-91 PMCID:PMC11350593

[27]

Luo W,Zhang Z,Li J.Flexible Ti mesh-supported MnOx-CuOx/TiO2 nanosheet monolithic catalysts for low-temperature selective catalytic reduction of NOx with NH3.ACS Appl Nano Mater2024;7:6262-72

[28]

Chen M,Wang H.The catalytic mechanisms and design strategies of noble metal catalysts for selective reduction of NOx with CO.ChemCatChem2024;16:e202400323

[29]

Chen X,Liu Y.Recent advances of cu-based catalysts for NO reduction by CO under O2-containing conditions.Catalysts2022;12:1402

[30]

Lian D,Wang H.Recent advancements in Fe-based catalysts for the efficient reduction of NOx by CO.Chem Asian J2024;19:e202400802

[31]

Lian D,Wang H.Promising selective catalytic reduction of NOx by CO: status, challenges, and perspective.Chem Eng J2024;496:154242

[32]

Liu S,Xu W.Transition metal-based catalysts for selective catalytic reduction of NO by CO: a state-of-the-art review.Chem Eng J2024;486:150285

[33]

Wang H,Chen M.Enhancing the resistance of single-atom and cluster catalysts in CO-SCR to water, sulfur, and oxygen via structural engineering.Chem Eng J2024;500:157326

[34]

Du Y,Zhou Y,Tang X.Recent advance of CuO-CeO2 catalysts for catalytic elimination of CO and NO.J Environ Chem Eng2021;9:106372

[35]

Wang J,Dang P.Recent advances in NO reduction with CO over copper-based catalysts: reaction mechanisms, optimization strategies, and anti-inactivation measures.Chem Eng J2022;450:137374

[36]

Yang Y,Cao G.Monolithic CuMnO2 -nanosheet-based catalysts in situ grown on stainless steel mesh for selective catalytic reduction of NO with CO.ACS Appl Nano Mater2023;6:4803-11

[37]

Dong C,Cheng D.Supported metal clusters: fabrication and application in heterogeneous catalysis.ACS Catal2020;10:11011-45

[38]

Li X,Huang Y,Liu B.Supported noble-metal single atoms for heterogeneous catalysis.Adv Mater2019;31:e1902031

[39]

Yan H,Wang D.Highly efficient CeO2-supported noble-metal catalysts: from single atoms to nanoclusters.Chem Catal2022;2:1594-623

[40]

Leybo D,Monai M,Zhong Z.Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis.Chem Soc Rev2024;53:10450-90 PMCID:PMC11445804

[41]

Zeng L,Sun F.Stable anchoring of single rhodium atoms by indium in zeolite alkane dehydrogenation catalysts.Science2024;383:998-1004

[42]

Qiao B,Yang X.Single-atom catalysis of CO oxidation using Pt1/FeOx.Nat Chem2011;3:634-41

[43]

Yang XF,Qiao B,Liu J.Single-atom catalysts: a new frontier in heterogeneous catalysis.Acc Chem Res2013;46:1740-8

[44]

Liu L.Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles.Chem Rev2018;118:4981-5079 PMCID:PMC6061779

[45]

Hannagan RT,Réocreux R.First-principles design of a single-atom-alloy propane dehydrogenation catalyst.Science2021;372:1444-7

[46]

Tao F.A new type of catalysts: catalysts of singly dispersed bimetallic sites.Trends Chem2023;5:486-99

[47]

Li Y,Sun H.Current status and perspectives of dual-atom catalysts towards sustainable energy utilization.Nanomicro Lett2024;16:139 PMCID:PMC10904713

[48]

Liang X,Yao S,Li Y.The progress and outlook of metal single-atom-site catalysis.J Am Chem Soc2022;144:18155-74

[49]

Liang X,Li Z.Challenge and chance of single atom catalysis: the development and application of the single atom site catalysts toolbox.Acc Chem Res2025;58:1607-19

[50]

Lang R,Liu JC.Non defect-stabilized thermally stable single-atom catalyst.Nat Commun2019;10:234 PMCID:PMC6335577

[51]

Fonseca J.Single-atom catalysts designed and prepared by the atomic layer deposition technique.ACS Catal2021;11:7018-59

[52]

Chang J,Yong X.Synthesis of ultrahigh-metal-density single-atom catalysts via metal sulfide-mediated atomic trapping.Nat Synth2024;3:1427-38

[53]

Ji S,Wang X,Wang D.Chemical synthesis of single atomic site catalysts.Chem Rev2020;120:11900-55

[54]

Lv H,Chen M,Wu Y.Rational construction of thermally stable single atom catalysts: From atomic structure to practical applications.Chin J Catal2022;43:71-91

[55]

Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping.Scientometrics2010;84:523-38 PMCID:PMC2883932

[56]

Web of science all databases. Available from: https://www.webofscience.com (accessed 2025-8-7).

[57]

Zhang N,Jing Y.Enhanced nitrous oxide decomposition on zirconium-supported rhodium catalysts by iridium augmentation.Environ Sci Technol2025;59:1598-607

[58]

Yang L,He H.Enhanced low-temperature activity of Rh-Pt alloy clusters supported on TiO2/Ti nanosheets for selective catalytic reduction of NO by CO.Appl Surf Sci2025;695:162824

[59]

Yang L,Li S,Liu B.Cooperative Rh-Ov-Co sites boosting the wide reaction temperature window for NO reduction with CO.J Environ Chem Eng2025;13:115994

[60]

Cheng X,Su D,Chang J.NO reduction by CO over copper catalyst supported on mixed CeO2 and Fe2O3: catalyst design and activity test.Appl Catal B Environ2018;239:485-501

[61]

He Y,Zhang G.Interfacial effects promote the catalytic performance of CuCoO2-CeO2 metal oxides for the selective reduction of NO by CO.Chem Eng J2023;465:142856

[62]

Zhang L,Lu Y.Effect of precursors on the structure and activity of CuO-CoOx/γ-Al2O3 catalysts for NO reduction by CO.J Colloid Interface Sci2018;509:334-45

[63]

Xu Z,Lin Y.A review of the catalysts used in the reduction of NO by CO for gas purification.Environ Sci Pollut Res Int2020;27:6723-48

[64]

Gholami Z,Gholami F.Recent advances in selective catalytic reduction of NOx by carbon monoxide for flue gas cleaning process: a review.Catal Rev2021;63:68-119

[65]

Chen K,Wang Q,Yang X.Enhanced CO-SCR denitration on supported Rh-Mn/CoAlOx catalysts through Rh-Mn interaction.Appl Surf Sci2024;665:160357

[66]

Fernández E,Boronat M,Concepcion P.Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters.ACS Catal2019;9:11530-41 PMCID:PMC6902616

[67]

Pan Y,Li K.Enhanced low-temperature behavior of selective catalytic reduction of NOx by CO on Fe-based catalyst with looping oxygen vacancy.Chem Eng J2023;461:141814

[68]

Zang P,Zhang G.Insights into the highly activity CuMgFe oxides for the selective catalytic reduction of NO by CO: structure-activity relationships and K/SO2 poisoning mechanism.Fuel2023;331:125800

[69]

Li R,Li J,Liu Z.Unveiling the significant promoting effect of SO2 on Ir/SiO2 catalyst for the CO-SCR of NOx in the presence of O2.J Catal2024;430:115336

[70]

Bai Y,Deng S,Wu Z.Unveiling the effect of SO2 on CO selective catalytic reduction of NO in the presence of O2 over IrRb@SBA-15 catalyst.Sep Purif Technol2025;352:128039

[71]

Zhang N,Yan H.Single-atom site catalysts for environmental catalysis.Nano Res2020;13:3165-82

[72]

Liu H,Xu W.Unraveling the synergistic mechanism of Ir species with various electron densities over an Ir/ZSM-5 catalyst enables high-efficiency NO reduction by CO.Environ Sci Technol2024;58:12082-90

[73]

Sun Y,Bai Y,Wang H.High performance iridium loaded on natural halloysite nanotubes for CO-SCR reaction.Fuel2024;357:129938

[74]

Jiang R,Li L.Single Ir atoms anchored on ordered mesoporous WO3 are highly efficient for the selective catalytic reduction of NO with CO under oxygen-rich conditions.ChemCatChem2021;13:1834-46

[75]

Inomata H,Kuwana A.Selective reduction of NO with CO in the presence of O2 with Ir/WO3 catalysts: influence of preparation variables on the catalytic performance.Appl Catal B Environ2008;84:783-9

[76]

Nanba T,Masukawa S,Ohi A.Formation of active sites on Ir/WO3-SiO2 for selective catalytic reduction of NO by CO.Appl Catal B Environ2008;84:420-5

[77]

Wang J,Yi H.Strong Ir-W interaction boosts CO-SCR denitration over supported Ir-based catalysts and influential mechanism of oxygen.Sep Purif Technol2023;325:124684

[78]

Jiang D,Li T.Tailoring the local environment of platinum in single-atom Pt1/CeO2 catalysts for robust low-temperature CO oxidation.Angew Chem Int Ed Engl2021;60:26054-62

[79]

Ji Y,Liu S.Tailoring the electronic structure of single Ag atoms in Ag/WO3 for efficient NO reduction by CO in the presence of O2.ACS Catal2023;13:1230-9

[80]

Roy S.Pd ion substituted CeO2: a superior de-NO catalyst to Pt or Rh metal ion doped ceria.Catal Commun2008;9:811-5

[81]

Roy S,Hegde M.High rates of CO and hydrocarbon oxidation and NO reduction by CO over Ti0.99Pd0.01O1.99.Appl Cataly B Environ2007;73:300-10

[82]

Roy S,Hegde M.High rates of NO and N2O reduction by CO, CO and hydrocarbon oxidation by O2 over nano crystalline Ce0.98Pd0.02O2-δ: catalytic and kinetic studies.Appl Catal B Environ2007;71:23-31

[83]

Xu Q,Zhang N.Unraveling the advantages of Pd/CeO2 single-atom catalysts in the NO + CO reaction by model catalysts.Nano Res2023;16:8882-92

[84]

Ikemoto S,Koitaya T.Chromium oxides as structural modulators of Rhodium dispersion on ceria to generate active sites for NO reduction.ACS Catal2022;12:431-41

[85]

Cai D,Kong Z.Synergistic effect of single-atom catalysts and vacancies of support for versatile catalytic applications.ChemCatChem2024;16:e202301414

[86]

Luo L,Liu H.Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light.Nat Commun2022;13:2930 PMCID:PMC9132922

[87]

Bai Y,Jin C,Wang S.Synergy of single-atom Fe1 and Ce-Ov sites on mesoporous CeO2-Al2O3 for efficient selective catalytic reduction of NO with CO.ACS Catal2024;14:827-36

[88]

Song I,Szanyi J.Co-existence of atomically dispersed Ru and Ce3+ sites is responsible for excellent low temperature N2O reduction activity of Ru/CeO2.Appl Cataly B Environ2024;343:123487

[89]

Song I,Engelhard MH,Wang Y.Developing robust ceria-supported catalysts for catalytic NO reduction and CO/hydrocarbon oxidation.ACS Catal2024;14:18247-55

[90]

Wu J,Yang Y.A heterogeneous single Cu catalyst of Cu atoms confined in the spinel lattice of MgAl2O4 with good catalytic activity and stability for NO reduction by CO.J Mater Chem A2019;7:7202-12

[91]

Asokan C,Dang A,Christopher P.Low-temperature ammonia production during NO reduction by CO Is due to atomically dispersed rhodium active sites.ACS Catal2020;10:5217-22

[92]

Yang C.Infrared studies of carbon monoxide chemisorbed on Rhodium.J Phys Chem1957;61:1504-12

[93]

Matsubu JC,Christopher P.Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.J Am Chem Soc2015;137:3076-84

[94]

Wu D,Zhong M.Nature and dynamic evolution of Rh single atoms trapped by CeO2 in CO hydrogenation.ACS Catal2022;12:12253-67

[95]

Khivantsev K,Tian J.Economizing on precious metals in three-way catalysts: thermally stable and highly active single-atom Rhodium on ceria for NO abatement under dry and industrially relevant conditions*.Angew Chem Int Ed Engl2021;60:391-8

[96]

Khivantsev K,Aleksandrov HA.Single Ru(II) ions on ceria as a highly active catalyst for abatement of NO.J Am Chem Soc2023;145:5029-40

[97]

Tian J,Lu Y.NO reduction with CO on low-loaded platinum-group metals (Rh, Ru, Pd, Pt, and Ir) atomically dispersed on ceria.ChemCatChem2024;16:e202301227

[98]

Wang T,Ouyang R.Nature of metal-support interaction for metal catalysts on oxide supports.Science2024;386:915-20.

[99]

S.; Fung, S.; Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide.J Am Chem Soc1978;100:170-5

[100]

Tauster S.Strong metal-support interactions: occurrence among the binary oxides of groups IIA?.J Catal1978;55:29-35

[101]

S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Strong interactions in supported-metal catalysts.Science1981;211:1121-5

[102]

Tang Y,Long B,Li J.On the Nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: importance of quantum primogenic effect.J Phys Chem C2016;120:17514-26

[103]

Adachi .; Brndiar, J.; Konôpka, M.; et al. Tip-activated single-atom catalysis: CO oxidation on Au adatom on oxidized rutile TiO2 surface.Sci. Adv.2023;9:eadi4799

[104]

Wan Q,Lin S,Jiang D.Perovskite-supported Pt single atoms for methane activation.J Mater Chem A2020;8:4362-8

[105]

Ji Y,Song S.Negatively charged single-atom Pt catalyst shows superior SO2 tolerance in NOx reduction by CO.ACS Catal2023;13:224-36

[106]

Gloag L,Gooding JJ.Co-catalytic metal-support interactions in single-atom electrocatalysts.Nat Rev Mater2024;9:173-89

[107]

Ji Y,Zhu H.Isolating contiguous Ir atoms and forming Ir-W intermetallics with negatively charged Ir for efficient NO reduction by CO.Adv Mater2022;34:e2205703

[108]

Jia C,Yang J.Toward rational design of dual-metal-site catalysts: catalytic descriptor exploration.ACS Catal2022;12:3420-9

[109]

Hu Y,Li B.Recent Progress of diatomic catalysts: general design fundamentals and diversified catalytic applications.Small2022;18:e2203589

[110]

Liu W,Xiang Z.Extremely active and robust Ir-Mn dual-atom electrocatalyst for oxygen evolution reaction by oxygen-oxygen radical coupling mechanism.Angew Chem Int Ed Engl2024;63:e202411014

[111]

Wang B,Xie C.A General metal ion recognition strategy to mediate dual-atomic-site catalysts.J Am Chem Soc2024;146:24945-55

[112]

Zhang YX,Huang H.General synthesis of a diatomic catalyst library via a macrocyclic precursor-mediated approach.J Am Chem Soc2023;145:4819-27

[113]

Sun X,Jiang B.Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries.Nat Commun2023;14:291 PMCID:PMC9849388

[114]

Hao Q,Wang J.Nickel dual-atom sites for electrochemical carbon dioxide reduction.Nat Synth2022;1:719-28

[115]

Jiang S,Liu T.Visualization of the distance-dependent synergistic interaction in heterogeneous dual-site catalysis.J Am Chem Soc2024;146:29084-93

[116]

Li L,Chen Y.Breaking the scaling relationship limit: from single-atom to dual-atom catalysts.Acc Mater Res2022;3:584-96

[117]

Chen Y,Pan Q,Ma T.Inter-metal interaction of dual-atom catalysts in heterogeneous catalysis.Angew Chem Int Ed Engl2023;62:e202306469

[118]

Pan Y,Liu Z,Li Y.Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis.Matter2020;2:78-110

[119]

Wang H,Kim JH.Synergistic interactions of neighboring platinum and iron atoms enhance reverse water-gas shift reaction performance.J Am Chem Soc2023;145:2264-70

[120]

Fu J,Si R.Synergistic effects for enhanced catalysis in a dual single-atom catalyst.ACS Catal2021;11:1952-61

[121]

Huang F,Chen Y.Low-temperature acetylene semi-hydrogenation over the Pd1-Cu1 dual-atom catalyst.J Am Chem Soc2022;144:18485-93

[122]

Tan Z,Kitagawa H.Slow synthesis methodology-directed immiscible octahedral Pdx Rh1-x dual-atom-site catalysts for superior three-way catalytic activities over Rh.Angew Chem Int Ed Engl2022;61:e202202588

[123]

Zhao X,Kong XP,Li Y.Dual-metal hetero-single-atoms with different coordination for efficient synergistic catalysis.J Am Chem Soc2021;143:16068-77

[124]

Liu Z,Wang Z.Synergistic dual-atom catalysts on ceria for enhanced CO preferential oxidation: insights from high-throughput first-principles microkinetics.ACS Catal2025;15:664-75

[125]

Tang X,Tang S,Yuan K.Structural and chemical origin of dual-atom sites for enhanced oxygen electroreduction.ACS Catal2024;14:13065-80

[126]

Han A,Tang K.An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance.Angew Chem Int Ed Engl2021;60:19262-71

[127]

Gao Y,Wang D.Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application.Adv Mater2023;35:e2209654

[128]

Kim J,Cho J,Jang HW.Toward multicomponent single-atom catalysis for efficient electrochemical energy conversion.ACS Mater Au2022;2:1-20 PMCID:PMC9888646

[129]

Ding Y,Xiong W.Insights into N-coordinated bimetallic site synergy during no selective catalytic reduction by CO.ACS Appl Mater Interfaces2021;13:57182-92

[130]

Zhou X,Li K.Dual-site single-atom catalysts with high performance for three-way catalysis.Adv Mater2022;34:e2201859

[131]

Vogt C.The concept of active site in heterogeneous catalysis.Nat Rev Chem2022;6:89-111

[132]

Hannagan RT,Flytzani-Stephanopoulos M.Single-atom alloy catalysis.Chem Rev2020;120:12044-88

[133]

Liu L.Bimetallic sites for catalysis: from binuclear metal sites to bimetallic nanoclusters and nanoparticles.Chem Rev2023;123:4855-933 PMCID:PMC10141355

[134]

Jiang T,Tang Y.Breaking continuously packed bimetallic sites to singly dispersed on nonmetallic support for efficient hydrogen production.ACS Appl Mater Interfaces2024;16:21757-70

[135]

Zhang S,Liang JX.Catalysis on singly dispersed bimetallic sites.Nat Commun2015;6:7938

[136]

Liu N,Li J.Singly Dispersed bimetallic sites as stable and efficient single-cluster catalysts for activating N2 and CO2.J Phys Chem C2021;125:27192-8

[137]

Nguyen L,Wang L.Reduction of nitric oxide with hydrogen on catalysts of singly dispersed bimetallic sites Pt1Com and Pd1Con.ACS Catal2016;6:840-50

[138]

Ma X,Xu L,Yao W.Theoretical investigation on hydrogenation of dinitrogen triggered by singly dispersed bimetallic sites.J Mater Chem A2022;10:6146-52

[139]

Zhang S,Zhu Y.WGS catalysis and in situ studies of CoO1-x, PtCon/Co3O4, and PtmCom’/CoO1-x nanorod catalysts.J Am Chem Soc2013;135:8283-93

[140]

Nguyen L,Tan L,Liu J.Ir1Znn bimetallic site for efficient production of hydrogen from methanol.ACS Sustainable Chem Eng2019;7:18793-800

[141]

Yang H,Fang Y.Singly dispersed Ir1Ti3 bimetallic site for partial oxidation of methane at high temperature.Appl Surf Sci2022;599:153863

[142]

Jin X,Liu J.Insight into the reaction mechanism of the reduction of NO by H2 on the singly dispersed bimetallic Pt(Rh)Co4/Co3O4 catalysts: a first-principles study.J Phys Chem C2020;124:9908-16

[143]

Wang P,Liao H.Restructured zeolites anchoring singly dispersed bimetallic platinum and zinc catalysts for propane dehydrogenation.Cell Reports Physical Science2023;4:101311

[144]

Ma XL,Xiao H.Surface single-cluster catalyst for N2-to-NH3 thermal conversion.J Am Chem Soc2018;140:46-9

[145]

Zhang T,Yu J.Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities.Chem Soc Rev2021;50:569-88

[146]

Jin Z,Chhetri M.Recent developments of single atom alloy catalysts for electrocatalytic hydrogenation reactions.Chem Eng J2024;491:152072

[147]

Papanikolaou KG,Stamatakis M.Engineering the surface architecture of highly dilute alloys: an ab initio monte Carlo approach.ACS Catal2020;10:1224-36

[148]

Papanikolaou KG,Stamatakis M.CO-induced aggregation and segregation of highly dilute alloys: a density functional theory study.J Phys Chem C2019;123:9128-38

[149]

Ouyang M,Boubnov A.Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts.Nat Commun2021;12:1549 PMCID:PMC7943817

[150]

Pei GX,Yang X.Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions.ACS Catal2017;7:1491-500

[151]

Zhang S,Zhang X.Recent advances in single-atom alloys: preparation methods and applications in heterogeneous catalysis.RSC Adv2024;14:3936-51 PMCID:PMC10823358

[152]

Schumann J,Michaelides A.Ten-electron count rule for the binding of adsorbates on single-atom alloy catalysts.Nat Chem2024;16:749-54 PMCID:PMC11087240

[153]

Liu J,Yang M.Tackling CO poisoning with single-atom alloy catalysts.J Am Chem Soc2016;138:6396-9

[154]

Mao J,Pei J,Li Y.Single atom alloy: an emerging atomic site material for catalytic applications.Nano Today2020;34:100917

[155]

Bunting RJ,Torabi T.Reactivity of single-atom alloy nanoparticles: modeling the dehydrogenation of propane.J Am Chem Soc2023;145:14894-902 PMCID:PMC10347548

[156]

Berger F,Réocreux R,Michaelides A.Bringing molecules together: synergistic coadsorption at dopant sites of single atom alloys.J Am Chem Soc2024;146:28119-30 PMCID:PMC11487606

[157]

Bai Y,Sun Y.Insight into the mechanism of selective catalytic reduction of NO by CO over a bimetallic IrRu/ZSM-5 catalyst in the absence/presence of O2 by Isotopic C13O tracing methods.Environ Sci Technol2023;57:9105-14

[158]

Song JH,You Y.Kinetic and DRIFTS studies of IrRu/Al2O3 catalysts for lean NOx reduction by CO at low temperature.Catal Sci Technol2020;10:8182-95

[159]

Arshad MW,You Y,Heo I.A first-principles understanding of the CO-assisted NO reduction on the IrRu/Al2O3 catalyst under O2-rich conditions.Catal Sci Technol2021;11:4353-66

[160]

Song JH,You Y,Heo I.Lean NOx reduction by CO at low temperature over bimetallic IrRu/Al2O3 catalysts with different Ir : Ru ratios.Catal Sci Technol2020;10:2120-36

[161]

Papanikolaou KG.On the behaviour of structure-sensitive reactions on single atom and dilute alloy surfaces.Catal Sci Technol2020;10:5815-28

[162]

Beniya A,Isomura N,Watanabe Y.Synergistic promotion of NO-CO reaction cycle by gold and nickel elucidated using a well-defined model bimetallic catalyst surface.ACS Catal2017;7:1369-77

[163]

Wen H,Jin X.Mechanism of nitric oxide reduction by hydrogen on Ni(110) and Ir/Ni(110): first principles and microkinetic modeling.J Phys Chem C2019;123:4825-36

[164]

Giannakakis G,Sykes ECH.Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts.Acc Chem Res2019;52:237-47

[165]

Xing F,Toyao T,Furukawa S.A Cu-Pd single-atom alloy catalyst for highly efficient NO reduction.Chem Sci2019;10:8292-8 PMCID:PMC7006621

[166]

Darby MT,Michaelides A.Lonely atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys.J Phys Chem Lett2018;9:5636-46

[167]

Jeon J,Toyao T,Furukawa S.Design of Pd-based pseudo-binary alloy catalysts for highly active and selective NO reduction.Chem Sci2019;10:4148-62 PMCID:PMC6471737

[168]

Jeon J,Xing F,Shimizu K.PdIn-based pseudo-binary alloy as a catalyst for NOx removal under lean conditions.ACS Catal2020;10:11380-4

[169]

Zhang J,Gao Z.Importance of species heterogeneity in supported metal catalysts.J Am Chem Soc2022;144:5108-15

[170]

Luo G,Zhang Q.Advances of synergistic electrocatalysis between single atoms and nanoparticles/clusters.Nanomicro Lett2024;16:241 PMCID:PMC11233490

[171]

Su D,Sheng H.Efficient amine-assisted CO2 hydrogenation to methanol co-catalyzed by metallic and oxidized sites within ruthenium clusters.Nat Commun2025;16:590 PMCID:PMC11724949

[172]

Mo F,Zhou Q.The optimized Fenton-like activity of Fe single-atom sites by Fe atomic clusters-mediated electronic configuration modulation.Proc. Natl Acad Sci2023;120:e2300281120. PMCID:PMC10104488

[173]

Lan G,Zhu Y,Han W.Single-site Au/carbon catalysts with single-atom and Au nanoparticles for acetylene hydrochlorination.ACS Appl Nano Mater2020;3:3004-10

[174]

Jiang R,Zheng X.Metal-organic framework-derived Co nanoparticles and single atoms as efficient electrocatalyst for pH universal hydrogen evolution reaction.Nano Res2022;15:7917-24

[175]

Gao M,Guo Z.Mutual-modification effect in adjacent Pt nanoparticles and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution.Chem Eng J2022;446:137127

[176]

Zeng Y,Li C.Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt.J Am Chem Soc2023;145:17643-55

[177]

Zhang B,Liu G.A strongly coupled Ru-CrOx cluste-cluster heterostructure for efficient alkaline hydrogen electrocatalysis.Nat Catal2024;7:441-51

[178]

Liu S,Liu B.Co single atoms and CoOx nanoclusters anchored on Ce0.75Zr0.25O2 synergistically boosts the no reduction by CO.Adv Funct Mater2023;33:2303297

[179]

Kuai L,Liu S.Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation.Nat Commun2020;11:48 PMCID:PMC6946645

[180]

Yang L,Liu T.Synergistic catalysis of Rh single-atom and clusters supported on TiO2 nanosheet array for highly efficient removal of CO and NOx.Small Struct2024;5:2400230

[181]

Ren W,Jia C.Electronic regulation of nickel single atoms by confined nickel nanoparticles for energy-efficient CO2 electroreduction.Angew Chem Int Ed Engl2022;61:e202203335

[182]

He Q,Shou H.Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media.Adv Mater2022;34:e2110604

[183]

Liu A,Cao Y.Controlling dynamic structural transformation of atomically dispersed CuOx species and influence on their catalytic performances.ACS Catal2019;9:9840-51

[184]

Mitchell S.Atomically precise control in the design of low-nuclearity supported metal catalysts.Nat Rev Mater2021;6:969-85

[185]

Hsu CS,Chu YC.Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reduction.Nat Commun2023;14:5245 PMCID:PMC10462635

[186]

Ye C,Zhu C.Spatial structure engineering of interactive single platinum sites toward enhanced electrocatalytic hydrogen evolution.Adv Energy Mater2023;13:2302190

[187]

Li L.Atomic dispersion of bulk/nano metals to atomic-sites catalysts and their application in thermal catalysis.Nano Res2023;16:6380-401

[188]

Li R,Liu B.Atomic distance engineering in metal catalysts to regulate catalytic performance.Adv Mater2024;36:e2308653

[189]

Feng C,Wang D.Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution.J Am Chem Soc2022;144:9271-9

[190]

Zhang Z,Ma P.Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution.Nat Commun2024;15:1767 PMCID:PMC10897172

[191]

Yan Y,Liu M.General synthesis of neighboring dual-atomic sites with a specific pre-designed distance via an interfacial-fixing strategy.Nat Commun2025;16:334 PMCID:PMC11697254

[192]

Jiang D,Halldin Stenlid J.Dynamic and reversible transformations of subnanometre-sized palladium on ceria for efficient methane removal.Nat Catal2023;6:618-27

[193]

Jiang D,García-vargas CE.Elucidation of the active sites in single-atom Pd1/CeO2 catalysts for low-temperature CO oxidation.ACS Catal2020;10:11356-64

[194]

Tan W,Le D.Fine-tuned local coordination environment of Pt single atoms on ceria controls catalytic reactivity.Nat Commun2022;13:7070 PMCID:PMC9674627

[195]

Zhang L,Lin J.On the coordination environment of single-atom catalysts.Acc Chem Res2025;58:1878-92

[196]

DeRita L,Lopez-Zepeda K.Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2.J Am Chem Soc2017;139:14150-65

[197]

Lin L,Chen W.Single atom catalysts by atomic diffusion strategy.Nano Res2021;14:4398-416

[198]

Han L,Liu W.A single-atom library for guided monometallic and concentration-complex multimetallic designs.Nat Mater2022;21:681-8

[199]

Zhou H,Gan J.Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene.J Am Chem Soc2020;142:12643-50

[200]

Kaiser SK,Faust Akl D,Pérez-Ramírez J.Single-atom catalysts across the periodic table.Chem Rev2020;120:11703-809

[201]

Xing L,Weng Y.Top-down synthetic strategies toward single atoms on the rise.Matter2022;5:788-807

[202]

Jones J,DeLaRiva AT.Thermally stable single-atom platinum-on-ceria catalysts via atom trapping.Science2016;353:150-4

[203]

Hu Y,Yu C,Li Z.Mechanochemical preparation of single atom catalysts for versatile catalytic applications: a perspective review.Materials Today2023;63:288-312

[204]

Gan T,He Q,He X.Facile synthesis of kilogram-scale Co-alloyed Pt single-atom catalysts via ball milling for hydrodeoxygenation of 5-hydroxymethylfurfural.ACS Sustainable Chem Eng2020;8:8692-9

[205]

Gan T,Zhang H.Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen.Chem Eng J2020;389:124490

[206]

Zhang H,Shi S.Highly efficient fabrication of kilogram-scale palladium single-atom catalysts for the Suzuki-Miyaura cross-coupling reaction.ACS Appl Mater Interfaces2022;14:53755-60

[207]

He X,Zhang Y.Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts.Cell Rep Phys Sci2020;1:100004

[208]

Qu Y,Chen W.Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms.Nat Catal2018;1:781-6

[209]

Tang B,Ji Q.A Janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution.Nat Synth2024;3:878-90

[210]

Hai X,Mitchell S.Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries.Nat Nanotechnol2022;17:174-81

[211]

Wang Y,Han X.General negative pressure annealing approach for creating ultra-high-loading single atom catalyst libraries.Nat Commun2024;15:5675 PMCID:PMC11227521

[212]

Al-Hilfi SH,Heuer J.Single-atom catalysts through pressure-controlled metal diffusion.J Am Chem Soc2024;146:19886-95 PMCID:PMC11273616

[213]

Xiong Y,Xin P.Gram-scale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene.Adv Mater2020;32:e2000896

[214]

He X,Zhang X.Building up libraries and production line for single atom catalysts with precursor-atomization strategy.Nat Commun2022;13:5721 PMCID:PMC9522824

[215]

Liu P,Qin R.Photochemical route for synthesizing atomically dispersed palladium catalysts.Science2016;352:797-801

[216]

Keil FJ.Molecular modelling for reactor design.Annu Rev Chem Biomol Eng2018;9:201-27

[217]

Yu Z,Li X.Kinetics driven by hollow nanoreactors: an opportunity for controllable catalysis.Angew Chem Int Ed Engl2023;62:e202213612

[218]

Sarvestani M,Di Maria F.From catalyst development to reactor design: a comprehensive review of methanol synthesis techniques.Energy Convers Manag2024;302:118070

[219]

Zheng R,Wang Y.Industrial catalysis: strategies to enhance selectivity.Chin J Catal2020;41:1032-8

[220]

Guo Y,Zhu Q,Ma D.Ensemble effect for single-atom, small cluster and nanoparticle catalysts.Nat Catal2022;5:766-76

[221]

Wang C,Ge J.Reaction: industrial perspective on single-atom catalysis.Chem2019;5:2736-7

[222]

Hülsey MJ,Yan N.Harnessing the wisdom in colloidal chemistry to make stable single-atom catalysts.Adv Mater2018;30:e1802304

[223]

Hu Y,Li Z.Progress in batch preparation of single-atom catalysts and application in sustainable synthesis of fine chemicals.Green Chem2021;23:8754-94

[224]

Xiong H,Goetze J.Thermally stable and regenerable platinum-tin clusters for propane dehydrogenation prepared by atom trapping on ceria.Angew Chem Int Ed Engl2017;56:8986-91 PMCID:PMC5697674

[225]

Guo W,Wang X.General design concept for single-atom catalysts toward heterogeneous catalysis.Adv Mater2021;33:e2004287

[226]

Jin H,Cao C.An overview of metal density effects in single-atom catalysts for thermal catalysis.ACS Catal2023;13:15126-42

[227]

Garole DJ,Garole VJ,Nerkar J.Recycle, recover and repurpose strategy of spent Li-ion batteries and catalysts: current status and future opportunities.ChemSusChem2020;13:3079-100

[228]

Zhou H,Zhao X.A supported nickel catalyst stabilized by a surface digging effect for efficient methane oxidation.Angew Chem Int Ed Engl2019;58:18388-93

[229]

Fu N,Wang X.Controllable conversion of platinum nanoparticles to single atoms in Pt/CeO2 by laser ablation for efficient CO oxidation.J Am Chem Soc2023;145:9540-7

[230]

Zhou H,Xu J.Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization.Nat Commun2020;11:335 PMCID:PMC6969067

[231]

Loy ACM,How BS.Elucidation of single atom catalysts for energy and sustainable chemical production: synthesis, characterization and frontier science.Prog Energy Combust Sci2023;96:101074

[232]

Gashnikova D,Sauter E.Highly active oxidation catalysts through confining Pd clusters on CeO2 nano-islands.Angew Chem Int Ed Engl2024;63:e202408511

[233]

Li X,Chen Y.Functional CeOx nanoglues for robust atomically dispersed catalysts.Nature2022;611:284-8

[234]

Li Z,Li Q.Single-atom nano-islands (SANIs): a robust atomic-nano system for versatile heterogeneous catalysis applications.Adv Mater2023;35:e2211103

[235]

Liu X,Lin J.Directional growth and density modulation of single-atom platinum for efficient electrocatalytic hydrogen evolution.Angew Chem Int Ed Engl2024;63:e202406650

[236]

Zhang X,Li J.Dehydrogenation of n -butane on metal cobalt sites confined within ceria nanoislands.ACS Catal2024;14:15123-32

[237]

Zhang F,Lin Q,Zhang X.Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis.Energy Environ Sci2021;14:2954-3009

[238]

Agrachev M,Surin I,Jeschke G.Electron paramagnetic resonance spectroscopy for the analysis of single-atom catalysts.Chem Catal2024;4:101136

[239]

Tang M,Ou Y.Recent progresses on structural reconstruction of nanosized metal catalysts via controlled-atmosphere transmission electron microscopy: a review.ACS Catal2020;10:14419-50

[240]

Liu Y,Ding J.Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques.Chem Soc Rev2024;53:11850-87

[241]

Liu Q.Platinum single-atom catalysts: a comparative review towards effective characterization.Catal Sci Technol2019;9:4821-34

[242]

Zhao Y,Chen S.Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction.Angew Chem Int Ed Engl2019;58:12252-7

[243]

Yuan W,You R,Wang Y.Toward in situ atomistic design of catalytic active sites via controlled atmosphere transmission electron microscopy.Acc Mater Res2023;4:275-86

[244]

Kraushofer F.Single-atom catalysis: insights from model systems.Chem Rev2022;122:14911-39 PMCID:PMC9523716

[245]

Liberto G, Tosoni S, Cipriano LA, Pacchioni G. A few questions about single-atom catalysts: when modeling helps.Acc Mater Res2022;3:986-95

[246]

Zhang W,Luo Q,Yang J.Understanding single-atom catalysis in view of theory.JACS Au2021;1:2130-45 PMCID:PMC8715482

[247]

Sun J,Xu Y.Machine learning aided design of single-atom alloy catalysts for methane cracking.Nat Commun2024;15:6036 PMCID:PMC11255339

[248]

Zheng J,Deng S,Hu J.Accelerating the screening of modified MA2Z4 catalysts for hydrogen evolution reaction by deep learning-based local geometric analysis.2024;7:e12743

[249]

Xu H,Cao D.Revisiting the universal principle for the rational design of single-atom electrocatalysts.Nat Catal2024;7:207-18

[250]

Hai X,Yu Q.Geminal-atom catalysis for cross-coupling.Nature2023;622:754-60

[251]

Zhang S,Nguyen L.Catalysis on singly dispersed Rh atoms anchored on an inert support.ACS Catal2018;8:110-21

[252]

Sato K,Tomonaga H.Pt-Co alloy nanoparticles on a γ-Al2O3 support: synergistic effect between isolated electron-rich Pt and Co for automotive exhaust purification.Chempluschem2019;84:447-56

AI Summary AI Mindmap
PDF

365

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/