Asymmetrically coordinated single-atom catalysts: from synthetic strategy to structure-activity relationship

Tian Xia , Xiaofeng Wang , Jiawei Wan , Jian Qi , Dan Wang , Ranbo Yu

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (4) : 74

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (4) :74 DOI: 10.20517/cs.2025.08
review-article

Asymmetrically coordinated single-atom catalysts: from synthetic strategy to structure-activity relationship

Author information +
History +
PDF

Abstract

Asymmetric coordination structures in single-atom catalysts (SACs) represent a frontier in electrocatalysis, offering tunable electronic environments and enhanced catalytic performance beyond traditional symmetric M–N4 motifs. This review first categorizes asymmetric SACs into four structural families: (1) single-metal asymmetric coordination, achieved by heteroatom substitution or axial ligand incorporation; (2) non-contact multi-metal sites, where adjacent but unbonded metal atoms synergize electronically; (3) directly bimetallic-bonded asymmetric coordination structures; and (4) bridged multi-metal constructs connected via non-metal linkers (e.g., O, N, S). Key synthetic strategies, including metal–organic framework confinement, defect engineering, dual-solvent loading, and macrocyclic precursor mediation, are examined in detail. Then we summarize applications in oxygen reduction reaction and CO2 reduction reaction catalysis, and highlight how asymmetric coordination tunes intermediate adsorption energies, breaks scaling relations, and enables tandem catalysis to improve activity, selectivity, and stability. Advanced characterization techniques - aberration-corrected scanning transmission electron microscopy with electron energy loss spectroscopy, synchrotron X-ray absorption spectroscopy, and time-of-flight secondary ion mass spectrometry - are discussed for their roles in resolving atomic dispersion, coordination environment, oxidation states, and dynamic evolution under operando conditions. Finally, challenges and future directions are outlined, including precise low-temperature assembly of heteronuclear sites, scalability, long-term stability under harsh reaction conditions, selective pathway control, and the integration of operando analyses with theoretical modeling to guide rational catalyst design.

Keywords

Single-atom catalysts / asymmetric coordination / electrocatalysis / oxygen reduction reaction / CO2 reduction reaction

Cite this article

Download citation ▾
Tian Xia, Xiaofeng Wang, Jiawei Wan, Jian Qi, Dan Wang, Ranbo Yu. Asymmetrically coordinated single-atom catalysts: from synthetic strategy to structure-activity relationship. Chemical Synthesis, 2025, 5(4): 74 DOI:10.20517/cs.2025.08

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wei Y,Kang J,Wang X.Policy and management of carbon peaking and carbon neutrality: a literature review.Engineering2022;14:52-63

[2]

Deng D,Feng Q.Highly reversible zinc-air batteries at -40 °C enabled by anion-mediated biomimetic fat.Adv Funct Mater2024;34:2308762

[3]

Zheng H,Zheng X.Highly reversible Zn-air batteries enabled by tuned valence electron and steric hindrance on atomic Fe-N4-C sites.Nano Lett2024;24:4672-81

[4]

Yang Q,Zhuo H,Yu Q.Recent progress of metal single-atom catalysts for energy applications.Nano Energy2023;111:108404

[5]

Lin Z,Cheng L.Tuning the p-orbital electron structure of s-block metal Ca enables a high-performance electrocatalyst for oxygen reduction.Adv Mater2021;33:e2107103

[6]

Li R,Wu D.Understanding the bifunctional trends of Fe-based binary single-atom catalysts.Adv Sci2023;10:e2301566 PMCID:PMC10460889

[7]

Zhao ZH,Liao PQ.Highly efficient electroreduction of CO2 to ethanol via asymmetric C-C coupling by a metal-organic framework with heterodimetal dual sites.J Am Chem Soc2023;145:26783-90

[8]

Jiang Y,Chen C,Qiao S.Catalyst–electrolyte interface engineering propels progress in acidic CO2 electroreduction.Energy Environ Sci2025;18:2025-49

[9]

Liu T,Li T.Selective CO2 reduction over γ-graphyne supported single-atom catalysts: crucial role of strain regulation.J Am Chem Soc2024;146:24133-40

[10]

Sun B,Xiao D.Unveiling pH-dependent adsorption strength of *CO2- intermediate over high-density Sn single atom catalyst for acidic CO2-to-HCOOH electroreduction.Angew Chem Int Ed Engl2024;63:e202318874

[11]

Wang Y,Wang M.Pumping electrons from oxygen-bridged cobalt for low-charging-voltage Zn-air batteries.Nano Lett2024;24:13653-61

[12]

Bai Y,Wang J.Inhibited passivation by bioinspired cell membrane Zn interface for Zn-air batteries with extended temperature adaptability.Adv Mater2024;36:e2411404

[13]

Wang Y,Tang S.Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery.Angew Chem Int Ed Engl2023;62:e202219191

[14]

Li Y,Sun H.Current status and perspectives of dual-atom catalysts towards sustainable energy utilization.Nanomicro Lett2024;16:139 PMCID:PMC10904713

[15]

Wang Y,He Y.Advanced electrocatalysts with single-metal-atom active sites.Chem Rev2020;120:12217-314

[16]

Li Z,Li Q.Single-atom nano-islands (SANIs): a robust atomic-nano system for versatile heterogeneous catalysis applications.Adv Mater2023;35:e2211103

[17]

Lyu F,Jia Z.Two-dimensional mineral hydrogel-derived single atoms-anchored heterostructures for ultrastable hydrogen evolution.Nat Commun2022;13:6249 PMCID:PMC9586971

[18]

Liu H,Zong X,Hu Z.Role of the support effects in single-atom catalysts.Chem Asian J2023;18:e202201161

[19]

Han L,Liu W.A single-atom library for guided monometallic and concentration-complex multimetallic designs.Nat Mater2022;21:681-8

[20]

Jiang Z,Liu XZ.Interfacial assembly of binary atomic metal-Nx sites for high-performance energy devices.Nat Commun2023;14:1822 PMCID:PMC10067952

[21]

Shen R,Ng YH.Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts.Chin J Catal2022;43:2453-83

[22]

Wu H,Wu J.Atomic engineering modulates oxygen reduction of hollow carbon matrix confined single metal-nitrogen sites for zinc-air batteries.Small2023;19:e2301327

[23]

Tian H,Zhang P.High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media.Adv Mater2023;35:e2210714

[24]

Zhang S,Huang J.Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries.Nano Lett2021;21:9691-8

[25]

Li Y,Huang J.Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites.Angew Chem Int Ed Engl2021;60:9078-85

[26]

Lyu L,Lee S.Oxygen reduction kinetics of Fe-N-C single atom catalysts boosted by pyridinic N vacancy for temperature-adaptive Zn-air batteries.J Am Chem Soc2024;146:4803-13

[27]

Lu X,Yang P.Atomically dispersed Fe-N-C catalyst with densely exposed Fe-N4 active sites for enhanced oxygen reduction reaction.Chem Eng J2024;485:149529

[28]

Yin S,Yang J.Unveiling low temperature assembly of dense Fe-N4 active sites via hydrogenation in advanced oxygen reduction catalysts.Angew Chem Int Ed Engl2024;63:e202404766

[29]

Yu Y,Yang F.Meso/microporous single-atom catalysts featuring curved Fe-N4 sites boost the oxygen reduction reaction activity.Angew Chem Int Ed Engl2025;64:e202415691 PMCID:PMC11735866

[30]

Qin Y,Guo C.Phosphor-doping modulates the d-band center of Fe atoms in Fe-N4 catalytic sites to boost the activity of oxygen reduction.Appl Catal B Environ Energy2025;360:124553

[31]

Luo X,Wang H.Secondary-atom-doping enables robust Fe-N-C single-atom catalysts with enhanced oxygen reduction reaction.Nanomicro Lett2020;12:163 PMCID:PMC7770947

[32]

Liu D,Najam T.Single noble metal atoms doped 2D materials for catalysis.Appl Catal B Environ2021;297:120389

[33]

Fan M,Wu J,Sun D.Improving the catalytic activity of carbon-supported single atom catalysts by polynary metal or heteroatom doping.Small2020;16:e1906782

[34]

Chai Y,Duan X.Elucidation of the mechanistic origin of spin-state-dependent P-doped Fe single-atom catalysts for the oxidation of organic pollutants through peroxymonosulfate activation.Appl Catal B Environ2024;341:123289

[35]

Li Y,Sun Z,Li S.Sulfur modified carbon-based single-atom catalysts for electrocatalytic reactions.Small2024;20:e2401900

[36]

Li Z,Xiao S.Axial chlorine coordinated iron-nitrogen-carbon single-atom catalysts for efficient electrochemical CO2 reduction.Chem Eng J2022;430:132882

[37]

Xu J,Liu H.Breaking local charge symmetry of iron single atoms for efficient electrocatalytic nitrate reduction to ammonia.Angew Chem Int Ed Engl2023;62:e202308044

[38]

Li Y,Zou Y.Catalytic activity enhancement by P and S co-doping of a single-atom Fe catalyst for peroxymonosulfate-based oxidation.Chem Eng J2023;453:139890

[39]

Tang F,Wang L,Liu Y.Unsymmetrically N, S-coordinated single-atom cobalt with electron redistribution for catalytic hydrogenation of quinolines.J Catal2022;414:101-8

[40]

Sun T,Che R.Alloyed Co–Mo nitride as high-performance electrocatalyst for oxygen reduction in acidic medium.ACS Catal2015;5:1857-62

[41]

Chen C,Sun M.An asymmetrically coordinated ZnCoFe hetero-trimetallic atom catalyst enhances the electrocatalytic oxygen reaction.Energy Environ Sci2024;17:2298-308

[42]

Huang S,Wang S.Asymmetric microenvironment tailoring strategies of atomically dispersed dual-site catalysts for oxygen reduction and CO2 reduction reactions.Adv Mater2024;36:e2407974

[43]

Cai L,Gao Y.Atomically asymmetrical Ir-O-Co sites enable efficient chloride-mediated ethylene electrooxidation in neutral seawater.Angew Chem Int Ed Engl2025;64:e202417092

[44]

Zhan G,Li H.Highly selective urea electrooxidation coupled with efficient hydrogen evolution.Nat Commun2024;15:5918 PMCID:PMC11247087

[45]

Yang X,Liao K.Cohesive energy discrepancy drives the fabrication of multimetallic atomically dispersed materials for hydrogen evolution reaction.Nat Commun2024;15:8216 PMCID:PMC11411064

[46]

Wang Y,Dong F.N-coordinated Cu-Ni dual-single-atom catalyst for highly selective electrocatalytic reduction of nitrate to ammonia.Small2023;19:e2207695

[47]

Zhou Y,Utetiwabo W.Revealing of active sites and catalytic mechanism in N-coordinated Fe, Ni dual-doped carbon with superior acidic oxygen reduction than single-atom catalyst.J Phys Chem Lett2020;11:1404-10

[48]

Yu D,Hu F.Dual-sites coordination engineering of single atom catalysts for flexible metal–air batteries.Adv Energy Mater2021;11:2101242

[49]

Zhu Z,Wang Y.Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst.Adv Mater2020;32:e2004670

[50]

Li R.Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts.Adv Energy Mater2022;12:2103564

[51]

Woldu AR,Huang Z.Experimental and theoretical insights into single atoms, dual atoms, and sub-nanocluster catalysts for electrochemical CO2 reduction (CO2RR) to high-value products.Adv Mater2024;36:e2414169 PMCID:PMC11681321

[52]

Zheng X,Yan Y,Yao Y.Modulation effect in adjacent dual metal single atom catalysts for electrochemical nitrogen reduction reaction.Chin Chem Lett2022;33:1455-8

[53]

Chen C,Zhang F.Adjacent Fe site boosts electrocatalytic oxygen evolution at Co site in single-atom-catalyst through a dual-metal-site design.Energy Environ Sci2023;16:1685-96

[54]

Wan J,Shang H.In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance.J Am Chem Soc2020;142:8431-9

[55]

Li Y,Ren L.Asymmetric coordination regulating D-orbital spin-electron filling in single-atom iron catalyst for efficient oxygen reduction.Angew Chem Int Ed Engl2024;63:e202405334

[56]

Li X,Liu L.Chemical vapor deposition for N/S-doped single Fe site catalysts for the oxygen reduction in direct methanol fuel cells.ACS Catal2021;11:7450-9

[57]

Qu Q,Ji S.Engineering the Lewis acidity of Fe single-atom sites via atomic-level tuning of spatial coordination configuration for enhanced oxygen reduction.J Am Chem Soc2025;147:6914-24

[58]

Ren S,Shi L.Transforming plastics to single atom catalysts for peroxymonosulfate activation: axial chloride coordination intensified electron transfer pathway.Adv Mater2025;37:e2415339

[59]

Yan L,Wang Y.Optimizing the binding of the *OOH intermediate via axially coordinated Co-N5 motif for efficient electrocatalytic H2O2 production.Appl Catal B Environ2023;338:123078

[60]

Liu J,Allen C.Edge-hosted Fe-N3 sites on a multiscale porous carbon framework combining high intrinsic activity with efficient mass transport for oxygen reduction.Chem Catal2021;1:1291-307

[61]

Qin Y,Xu C.Highly accessible single Mn-N3 sites-enriched porous graphene structure via a confined thermal-erosion strategy for catalysis of oxygen reduction.Chem Eng J2022;440:135850

[62]

Zhang T,Liu H.Quasi-double-star nickel and iron active sites for high-efficiency carbon dioxide electroreduction.Energy Environ Sci2021;14:4847-57

[63]

Han A,Tang K.An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance.Angew Chem Int Ed Engl2021;60:19262-71

[64]

Zhao L,Mao B.A universal approach to dual-metal-atom catalytic sites confined in carbon dots for various target reactions.Proc Natl Acad Sci U S A2023;120:e2308828120 PMCID:PMC10622929

[65]

Li Z,Wang C.Geometric and electronic engineering of atomically dispersed copper-cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc-air batteries.Adv Mater2023;35:e2300905

[66]

Wu JX,He CT.Atomically dispersed dual-metal sites showing unique reactivity and dynamism for electrocatalysis.Nanomicro Lett2023;15:120 PMCID:PMC10151301

[67]

Zhang Q,Zhang Y.Insight into coupled Ni-Co dual-metal atom catalysts for efficient synergistic electrochemical CO2 reduction.J Energy Chem2023;87:509-17

[68]

Wang X,Guo S.p-d Orbital hybridization induced by asymmetrical FeSn dual atom sites promotes the oxygen reduction reaction.J Am Chem Soc2024;146:21357-66

[69]

Zhu J,Ren D.Quasi-covalently coupled Ni-Cu atomic pair for synergistic electroreduction of CO2.J Am Chem Soc2022;144:9661-71

[70]

Pan F,Yang W.Theory-guided design of atomic Fe–Ni dual sites in N,P-co-doped C for boosting oxygen evolution reaction.Chem Catal2021;1:734-45

[71]

Sun Z,Shang H,Zhang L.Atomic printing strategy achieves precise anchoring of dual-copper atoms on C2N structure for efficient CO2 reduction to ethylene.Angew Chem Int Ed Engl2024;63:e202405778

[72]

Zhang L,Shang H.High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation.Nat Commun2024;15:9440 PMCID:PMC11530662

[73]

Zhang T,Sun W.Spatial configuration of Fe-Co dual-sites boosting catalytic intermediates coupling toward oxygen evolution reaction.Proc Natl Acad Sci U S A2024;121:e2317247121 PMCID:PMC10861885

[74]

Zhao S,Qu Z.Cascade synthesis of Fe-N2-Fe dual-atom catalysts for superior oxygen catalysis.Angew Chem Int Ed Engl2024;63:e202408914

[75]

Sun Z,Wei Z.Sulfur-bridged asymmetric CuNi bimetallic atom sites for CO2 reduction with high efficiency.Adv Mater2024;36:e2404665

[76]

Li R,Liang X.Polystyrene waste thermochemical hydrogenation to ethylbenzene by a N-bridged Co, Ni dual-atom catalyst.J Am Chem Soc2023;145:16218-27

[77]

Wang B,Xie C.A general metal ion recognition strategy to mediate dual-atomic-site catalysts.J Am Chem Soc2024;146:24945-55

[78]

Zhang YX,Huang H.General synthesis of a diatomic catalyst library via a macrocyclic precursor-mediated approach.J Am Chem Soc2023;145:4819-27

[79]

Zhao Y,Ma X.Vacancy defects inductive effect of asymmetrically coordinated single-atom Fe-N3 S1 active sites for robust electrocatalytic oxygen reduction with high turnover frequency and mass activity.Adv Mater2024;36:e2308243

[80]

Guan G,Li F.Atomic cobalt metal centers with asymmetric N/B-coordination for promoting oxygen reduction reaction.Adv Funct Mater2024;34:2408111

[81]

Yin L,Sun M,Huang B.Heteroatom-driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction.Adv Mater2023;35:e2302485

[82]

Shao X,Rao Y.Main group SnN4O single sites with optimized charge distribution for boosting the oxygen reduction reaction.ACS Nano2024;18:14742-53

[83]

Lin X,Liu D.Asymmetric atomic tin catalysts with tailored p-orbital electron structure for ultra-efficient oxygen reduction.Adv Energy Mater2024;14:2303740

[84]

Huang M,Zhao X.Template-sacrificing synthesis of well-defined asymmetrically coordinated single-atom catalysts for highly efficient CO2 electrocatalytic reduction.ACS Nano2022;16:2110-9

[85]

Jin Z,Dong Y.Boosting electrocatalytic carbon dioxide reduction via self-relaxation of asymmetric coordination in Fe-based single atom catalyst.Angew Chem Int Ed Engl2024;63:e202318246

[86]

Wang Q,Li H.Asymmetric coordination induces electron localization at Ca sites for robust CO2 electroreduction to CO.Adv Mater2023;35:e2300695

[87]

Liu K,Chen W,Gao X.Ultra-fast pulsed discharge preparation of coordinatively unsaturated asymmetric copper single-atom catalysts for CO2 reduction.Adv Funct Mater2024;34:2312589

[88]

Zhou S,Cai X.Customizing highly asymmetrical coordination microenvironment into P-block metal single-atom sites to boost electrocatalytic CO2 reduction.Adv Funct Mater2024;34:2311422

[89]

Li J,Yao B.Cascade dual sites modulate local CO coverage and hydrogen-binding strength to boost CO2 electroreduction to ethylene.J Am Chem Soc2024;146:5693-701

[90]

Li F,Zhang H.Another role of CO-formation catalyst in acidic tandem CO2 electroreduction: local pH modulator.Joule2024;8:1772-89

[91]

Chen J,Yang X.Accelerated transfer and spillover of carbon monoxide through tandem catalysis for kinetics-boosted ethylene electrosynthesis.Angew Chem Int Ed Engl2023;62:e202215406

[92]

Li Y,Wei Z.Precisely constructing charge-asymmetric dual-atom Fe sites supported on hollow porous carbon spheres for efficient oxygen reduction.Energy Environ Sci2024;17:4646-57

[93]

He N,Chen X,Liang G.Design of S, N-codoped Co–Fe dual-atom sites for efficient alkaline oxygen reduction.J Mater Chem A2024;12:10101-9

[94]

Li L,Kong F.Tailoring atomic strain environment for high-performance acidic oxygen reduction by Fe-Ru dual atoms communicative effect.Matter2024;7:1517-32

[95]

Li M,Tian F.Spin-polarized PdCu-Fe3O4 in-plane heterostructures with tandem catalytic mechanism for oxygen reduction catalysis.Adv Mater2024;36:e2412004

[96]

Chen C,Qin G.Asymmetrically coordinated Cu dual-atom-sites enables selective CO2 electroreduction to ethanol.Adv Mater2024;36:e2409797

[97]

Xie Y,Sun K.Direct oxygen-oxygen cleavage through optimizing interatomic distances in dual single-atom electrocatalysts for efficient oxygen reduction reaction.Angew Chem Int Ed Engl2023;62:e202301833

[98]

Gao Z,Ma D.Electron energy loss spectroscopy for single atom catalysis.Top Catal2022;65:1609-19

[99]

Qi H,Liu F.Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones.Nat Commun2021;12:3295 PMCID:PMC8172939

[100]

Qian S,Fan Y.Tailoring coordination environments of single-atom electrocatalysts for hydrogen evolution by topological heteroatom transfer.Nat Commun2024;15:2774 PMCID:PMC10981667

[101]

Roccapriore KM,Robinson J,Ziatdinov M.Dynamic STEM-EELS for single-atom and defect measurement during electron beam transformations.Sci Adv2024;10:eadn5899 PMCID:PMC466940

[102]

Yang J,Xu M.Dynamic behavior of single-atom catalysts in electrocatalysis: identification of Cu-N3 as an active site for the oxygen reduction reaction.J Am Chem Soc2021;143:14530-9

[103]

Yang Y,Xiong Y.In situ X-ray absorption spectroscopy of a synergistic Co-Mn oxide catalyst for the oxygen reduction reaction.J Am Chem Soc2019;141:1463-6

[104]

Gorlin Y,Benck JD.In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction.J Am Chem Soc2013;135:8525-34 PMCID:PMC3874100

[105]

Erickson EM,Vasić R.In situ electrochemical X-ray absorption spectroscopy of oxygen reduction electrocatalysis with high oxygen flux.J Am Chem Soc2012;134:197-200

[106]

Zhu Y,Li Y.Emerging dynamic structure of electrocatalysts unveiled by in situ X-ray diffraction/absorption spectroscopy.Energy Environ Sci2021;14:1928-58

[107]

Xu YN,Xu Q.In situ/operando synchrotron radiation analytical techniques for CO2/CO reduction reaction: from atomic scales to mesoscales.Angew Chem Int Ed Engl2024;63:e202404213

[108]

Pei J,Mao J.A replacement strategy for regulating local environment of single-atom Co-SxN4-x catalysts to facilitate CO2 electroreduction.Nat Commun2024;15:416 PMCID:PMC10776860

[109]

Weng L.Advances in the surface characterization of heterogeneous catalysts using ToF-SIMS.Appl Catal A Gen2014;474:203-10

[110]

Koshy DM,Cullen DA.Direct characterization of atomically dispersed catalysts: nitrogen-coordinated Ni sites in carbon-based materials for CO2 electroreduction.Adv Energy Mater2020;10:2001836

[111]

Mukadam Z,Pedersen A.Furfural electrovalorisation using single-atom molecular catalysts.Energy Environ Sci2023;16:2934-44

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/