Selective heterogeneous photocatalytic activation for toluene oxidation: recent advances, challenges and perspective

Shiqin Gao , Lisu Bai , Tao Gan , Bolun Wang

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (1) : 22

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (1) :22 DOI: 10.20517/cs.2024.96
review-article

Selective heterogeneous photocatalytic activation for toluene oxidation: recent advances, challenges and perspective

Author information +
History +
PDF

Abstract

The conversion of toluene into high-value products without generating undesired CO2 remains a critical challenge. Selective oxidation of toluene under visible light irradiation has emerged as a promising solution. This review offers a comprehensive interpretation of photocatalytic transformations in heterogeneous toluene oxidation. We start by outlining the basic mechanism of C–H bond activation of toluene and provide an overview of reactive oxygen species (ROS) within photocatalytic systems. Subsequently, we provide a summary of strategies that have been developed to enhance the conversion and selectivity of the heterogeneous photocatalytic system. Following this, advanced characterization techniques and density functional theory (DFT) calculations are discussed for understanding the structure-performance relationship of photocatalysts and the mechanisms underlying photocatalytic processes. Finally, we put forward a detailed discussion of current challenges and potential directions for future research, with the aim of offering valuable insights for this emerging field. We believe that this review will not only spark greater creativity in optimizing photocatalysts but also offer valuable insights for designing other C–H bond activation systems.

Keywords

Photocatalysis / toluene oxidation / C–H bond activation / benzaldehyde

Cite this article

Download citation ▾
Shiqin Gao, Lisu Bai, Tao Gan, Bolun Wang. Selective heterogeneous photocatalytic activation for toluene oxidation: recent advances, challenges and perspective. Chemical Synthesis, 2025, 5(1): 22 DOI:10.20517/cs.2024.96

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mu Y.Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: a review.Chemosphere2022;308:136481

[2]

Mangotra A.Volatile organic compounds: a threat to the environment and health hazards to living organisms - a review.J Biotechnol2024;382:51-69

[3]

Siu B,Yan Z,Hutter T.Selective adsorption of volatile organic compounds in metal-organic frameworks (MOFs).Coord Chem Rev2023;485:215119

[4]

Sheng Y,Dong Q.Gas-particle two-phase adsorption of toluene and ultrafine particles on activated carbon studied by molecular simulation.Sci Total Environ2023;891:164591

[5]

Huang S,Zhang L.Adsorptive properties in toluene removal over hierarchical zeolites.Micropor Mesopor Mat2020;302:110204

[6]

Bal’zhinimaev BS,Toktarev AV.Effect of water on toluene adsorption over high silica zeolites.Micropor Mesopor Mat2019;277:70-7

[7]

Wang R,Yaseen M.Swellable array strategy based on designed flexible double hypercross-linked polymers for synergistic adsorption of toluene and formaldehyde.Environ Sci Technol2023;57:6682-94

[8]

Wu P,Qiu Y.Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts.Environ Sci Technol2021;55:4268-86

[9]

Li A,Zhao S.A dual plasmonic core - shell Pt/[TiN@TiO2] catalyst for enhanced photothermal synergistic catalytic activity of VOCs abatement.Nano Res2022;15:7071-80

[10]

Luo Y,Zhang J.Photothermocatalytic system designed by facet-heterojunction to enhance the synergistic effect of toluene oxidation.ChemCatChem2022;14:e202101958

[11]

Zhang Y,Wang Y.Fluorinated TiO2 coupling with α-MnO2 nanowires supported on different substrates for photocatalytic VOCs abatement under vacuum ultraviolet irradiation.Appl Catal B Environ2021;280:119388

[12]

Stucchi M,Pirola C.Surface decoration of commercial micro-sized TiO2 by means of high energy ultrasound: a way to enhance its photocatalytic activity under visible light.Appl Catal B Environ2015;178:124-32

[13]

Zhang L,Zhang J,Meng X.Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials.Chinese J Catal2016;37:800-9

[14]

Guo Y,Li G.Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review.Appl Catal B Environ2021;281:119447

[15]

He C,Zhang X,Pattisson S.Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources.Chem Rev2019;119:4471-568

[16]

Vandenbroucke AM,De Geyter N.Non-thermal plasmas for non-catalytic and catalytic VOC abatement.J Hazard Mater2011;195:30-54

[17]

Chen HL,Chen SH,Yu SJ.Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications.Environ Sci Technol2009;43:2216-27

[18]

Chung W,Tu X.Removal of VOCs from gas streams via plasma and catalysis.Catal Rev2019;61:270-331

[19]

Lapa HM.Toluene oxidation: CO2 vs benzaldehyde: current status and future perspectives.ACS Omega2024;9:26780-804 PMCID:PMC11209706

[20]

Loch C,Ruge I.Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages.Food Chem2016;206:74-7

[21]

Kesavan L,Ab Rahim MH.Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles.Science2011;331:195-9

[22]

Huang XQ,Fu J.A peroxisomal heterodimeric enzyme is involved in benzaldehyde synthesis in plants.Nat Commun2022;13:1352 PMCID:PMC8924275

[23]

Li H,Shu C,Kiss AA.Innovative reactive distillation process for the sustainable synthesis of natural benzaldehyde.ACS Sustain Chem Eng2018;6:14114-24

[24]

Zhu D,Wang L.A study on the oxidation of toluene to benzaldehyde by air catalyzed by polyoxometalate loaded on activated carbon.Mol Catal2023;551:113626

[25]

Huang H,Ge Y.Solvent-free oxidation of toluene to benzaldehyde using electron-rich Au clusters confined in silicalite-1.Chem Eng J2023;458:141446

[26]

Wu X,Yan J,Zhang Z.Effect of acetic anhydride on the oxidation of toluene to benzaldehyde with metal/bromide catalysts.Ind Eng Chem Res2014;53:14601-6

[27]

Cao X,Peng Q,Li Y.Modifications of heterogeneous photocatalysts for hydrocarbon C-H bond activation and selective conversion.Chem Commun2020;56:13918-32

[28]

Chengula PJ,Pawar RC.Current trends on dry photocatalytic oxidation technology for BTX removal: viable light sources and highly efficient photocatalysts.Chemosphere2024;351:141197

[29]

Chen R,Wang H.Photocatalytic reaction mechanisms at a gas–solid interface for typical air pollutant decomposition.J Mater Chem A2021;9:20184-210

[30]

Yang Y,Cui L.Recent advancement and future challenges of photothermal catalysis for VOCs elimination: from catalyst design to applications.Green Energy Environ2023;8:654-72

[31]

Ge H,Yuan Q.Gas phase partial oxidation of toluene over modified V2O5/TiO2 catalysts in a microreactor.Chem Eng J2007;127:39-46

[32]

Genuino HC,Njagi EC,Suib SL.Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts.J Phys Chem C2012;116:12066-78

[33]

Brückner A.A new approach to study the gas-phase oxidation of toluene: probing active sites in vanadia-based catalysts under working conditions.Appl Catal A Gen2000;200:287-97

[34]

Zhang Y,Xie R.Photocatalytic oxidation for volatile organic compounds elimination: from fundamental research to practical applications.Environ Sci Technol2022;56:16582-601

[35]

Xiong L.Strategies and challenges on selectivity of photocatalytic oxidation of organic substances.Adv Energy Mater2021;11:2003216

[36]

Shi Y,Chen H.Photocatalytic toluene oxidation with nickel-mediated cascaded active units over Ni/Bi2WO6 monolayers.Nat Commun2024;15:4641 PMCID:PMC11143222

[37]

Zhang L,Yu H.Emerging S-scheme photocatalyst.Adv Mater2022;34:e2107668

[38]

Chai Z.Heterogeneous photocatalytic strategies for C(sp3)-H activation.Angew Chem Int Ed Engl2024;63:e202316444

[39]

He T.Covalent organic frameworks for energy conversion in photocatalysis.Angew Chem Int Ed Engl2023;62:e202303086

[40]

Mai H,Chen D,Caruso RA.Machine learning for electrocatalyst and photocatalyst design and discovery.Chem Rev2022;122:13478-515

[41]

Chen H,Grassian VH.Titanium dioxide photocatalysis in atmospheric chemistry.Chem Rev2012;112:5919-48

[42]

da Costa Filho BM, Vilar VJ. Strategies for the intensification of photocatalytic oxidation processes towards air streams decontamination: a review.Chem Eng J2020;391:123531

[43]

Liang C,Zhu Y.Recent advances of photocatalytic degradation for BTEX: materials, operation, and mechanism.Chem Eng J2023;455:140461

[44]

MiarAlipour S,Scott J.TiO2/porous adsorbents: recent advances and novel applications.J Hazard Mater2018;341:404-23

[45]

Wu J,Luo H.Ultraviolet photocatalytic oxidation technology for indoor volatile organic compound removal: a critical review with particular focus on byproduct formation and modeling.J Hazard Mater2022;421:126766

[46]

Zheng Y,Yu Z,Han R.Oxygen vacancies in a catalyst for VOCs oxidation: synthesis, characterization, and catalytic effects.J Mater Chem A2022;10:14171-86

[47]

Cao X,Lin R.A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C–H bonds in toluene.Nat Catal2018;1:704-10

[48]

Teng Z,Yang H,Ohno T.Atomically isolated Sb(CN)3 on sp2-c-COFs with balanced hydrophilic and oleophilic sites for photocatalytic C-H activation.Sci Adv2024;10:eadl5432 PMCID:PMC10830113

[49]

Das A,Venkatramani R.Ultrafast photoactivation of C-H bonds inside water-soluble nanocages.Sci Adv2019;5:eaav4806 PMCID:PMC6386559

[50]

Li F,Fan Y.Chiral acid-catalysed enantioselective C-H functionalization of toluene and its derivatives driven by visible light.Nat Commun2019;10:1774 PMCID:PMC6467922

[51]

Nosaka Y.Generation and detection of reactive oxygen species in photocatalysis.Chem Rev2017;117:11302-36

[52]

Wang H,Yong D.Giant electron-hole interactions in confined layered structures for molecular oxygen activation.J Am Chem Soc2017;139:4737-42

[53]

He W,Wamer WG,Callahan JH.Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity.J Am Chem Soc2014;136:750-7

[54]

Yuan JP,Lin HY.Modeling the enzyme specificity by molecular cages through regulating reactive oxygen species evolution.Angew Chem Int Ed Engl2023;62:e202303896

[55]

Gao K,Zhang Z.Guest-regulated generation of reactive oxygen species from porphyrin-based multicomponent metallacages for selective photocatalysis.Angew Chem Int Ed Engl2024;63:e202319488

[56]

Zhang N,Pagliaro M.Nanochemistry-derived Bi2WO6 nanostructures: towards production of sustainable chemicals and fuels induced by visible light.Chem Soc Rev2014;43:5276-87

[57]

Ponseca CS Jr,Uhlig J,Sundström V.Ultrafast electron dynamics in solar energy conversion.Chem Rev2017;117:10940-1024

[58]

Zhang P,Chang X.Effective charge carrier utilization in photocatalytic conversions.Acc Chem Res2016;49:911-21

[59]

Li X,Jaroniec M.Hierarchical photocatalysts.Chem Soc Rev2016;45:2603-36

[60]

Xue Z,Ma L.Efficient benzylic C–H bond activation over single-atom yttrium supported on TiO2 via facilitated molecular oxygen and surface lattice oxygen activation.ACS Catal2024;14:249-61

[61]

Chen X,Shin I.Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species.Chem Soc Rev2011;40:4783-804

[62]

Hayyan M,AlNashef IM.Superoxide ion: generation and chemical implications.Chem Rev2016;116:3029-85

[63]

Zhang H,Gong Q.Photo-driven iron-induced non-oxidative coupling of methane to ethane.Angew Chem Int Ed Engl2023;62:e202303405

[64]

Li M,Huang H.Unprecedented eighteen-faceted BiOCl with a ternary facet junction boosting cascade charge flow and photo-redox.Angew Chem Int Ed Engl2019;58:9517-21

[65]

Huang H,Zeng C,Reshak AH.Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation.Angew Chem Int Ed Engl2017;56:11860-4

[66]

Cao X,Liang C.Engineering lattice disorder on a photocatalyst: photochromic BiOBr nanosheets enhance activation of aromatic C-H bonds via water oxidation.J Am Chem Soc2022;144:3386-97

[67]

Zhao X,Wang J.Near-infrared self-assembled hydroxyl radical generator based on photoinduced cascade electron transfer for hypoxic tumor phototherapy.Adv Mater2023;35:e2305163

[68]

Luo L,Li H.Water enables mild oxidation of methane to methanol on gold single-atom catalysts.Nat Commun2021;12:1218 PMCID:PMC7900127

[69]

Song H,Wang S.Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water.J Am Chem Soc2019;141:20507-15

[70]

Huang Z,Zhang C.Radical generation and fate control for photocatalytic biomass conversion.Nat Rev Chem2022;6:197-214

[71]

Zhou Y,Wang W.Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis.Nat Commun2019;10:506 PMCID:PMC6355835

[72]

Lin G,Chen R,Wang B.3D porphyrin-based covalent organic frameworks.J Am Chem Soc2017;139:8705-9

[73]

Chen X,Jin E.Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity.J Am Chem Soc2015;137:3241-7

[74]

Tachikawa T.Single-molecule, single-particle fluorescence imaging of TiO2-based photocatalytic reactions.Chem Soc Rev2010;39:4802-19

[75]

Gao Y,Yang C.Activity trends and mechanisms in peroxymonosulfate-assisted catalytic production of singlet oxygen over atomic metal-N-C catalysts.Angew Chem Int Ed Engl2021;60:22513-21

[76]

Sun Y,Fan L,Han W.Molecular oxygen activation in photocatalysis: generation, detection and application.Surf Interface2024;46:104033

[77]

Wang Y,He S,Yang C.Singlet oxygen: properties, generation, detection, and environmental applications.J Hazard Mater2024;461:132538

[78]

Cheng J,Cao S.Promoting solar-driven hydrogen peroxide production over thiazole-based conjugated polymers via generating and converting singlet oxygen.Angew Chem Int Ed Engl2023;62:e202310476

[79]

Dimitrijevic NM,Rajh T.Dynamics of localized charges in dopamine-modified TiO2 and their effect on the formation of reactive oxygen species.J Am Chem Soc2009;131:2893-9

[80]

Li J,Xue J.CQDS preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication.J Catal2019;369:450-61

[81]

Wang QY,Cao M.Aminal-linked porphyrinic covalent organic framework for rapid photocatalytic decontamination of mustard-gas simulant.Angew Chem Int Ed Engl2022;61:e202207130

[82]

Wang H,Chen S.Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis.Adv Mater2016;28:6940-5

[83]

Jiang M,Liu H,Niu K.Construction of a novel pyrene-based two-dimensional supramolecular organic framework and the selective regulation of reactive oxygen species for photocatalysis.J Mater Chem A2024;12:4752-60

[84]

Suleman S,Qian Y.Turning on singlet oxygen generation by outer-sphere microenvironment modulation in porphyrinic covalent organic frameworks for photocatalytic oxidation.Angew Chem Int Ed Engl2024;63:e202314988

[85]

Keum Y,Byun A.Synthesis and photocatalytic properties of titanium-porphyrinic aerogels.Angew Chem Int Ed Engl2020;59:21591-6

[86]

Huang T,Wen Z,Liang Y.Synergistic mediation of metallic bismuth and oxygen vacancy in Bi/Bi2WO6-x to promote 1O2 production for the photodegradation of bisphenol A and its analogues in water matrix.J Hazard Mater2021;403:123661

[87]

Long R,Li Y,Xiong Y.Palladium-based nanomaterials: a platform to produce reactive oxygen species for catalyzing oxidation reactions.Adv Mater2015;27:7025-42

[88]

Li X,Tao X,Li C.Interfacial synergy of Pd sites and defective BiOBr for promoting the solar-driven selective oxidation of toluene.J Mater Chem A2020;8:17657-69

[89]

Luo L,Wang M,Xiang X.Recent advances in heterogeneous photo-driven oxidation of organic molecules by reactive oxygen species.ChemSusChem2020;13:5173-84

[90]

Bicalho HA,Howarth AJ.Metal–organic frameworks for the generation of reactive oxygen species.Chem Phys Rev2021;2:041301

[91]

Waiskopf N,Banin U.Photocatalytic hybrid semiconductor-metal nanoparticles; from synergistic properties to emerging applications.Adv Mater2018;30:e1706697

[92]

Lee S,Choi W.Selective control and characteristics of water oxidation and dioxygen reduction in environmental photo(electro)catalytic systems.Acc Chem Res2023;56:867-77 PMCID:PMC10077592

[93]

Jiang Z,Ma Y.Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction.Nature2020;586:549-54

[94]

Zhou P,Guo S.Optimizing the semiconductor-metal-single-atom interaction for photocatalytic reactivity.Nat Rev Chem2022;6:823-38

[95]

Ju L,Tan X.Controllable electrocatalytic to photocatalytic conversion in ferroelectric heterostructures.J Am Chem Soc2023;145:26393-402

[96]

Xu X,Xu S,Li Y.Efficient photocatalytic cleavage of lignin models by a soluble perylene diimide/carbon nitride S-scheme heterojunction.Angew Chem Int Ed Engl2023;62:e202309066

[97]

Dey A,Biswas S,Biswas K.COF-topological quantum material nano-heterostructure for CO2 to syngas production under visible light.Angew Chem Int Ed Engl2024;63:e202315596

[98]

Yang Y,Hu N.Construction of gold/rhodium freestanding superstructures as antenna-reactor photocatalysts for plasmon-driven nitrogen fixation.J Am Chem Soc2024;146:7734-42

[99]

Xu Q,Cheng B,Yu J.S-scheme heterojunction photocatalyst.Chem2020;6:1543-59

[100]

He J,Ding D.Facile fabrication of novel Cd3(C3N3S3)2/CdS porous composites and their photocatalytic performance for toluene selective oxidation under visible light irradiation.Appl Catal B Environ2018;233:243-9

[101]

Tan YX,Wang BH.Boosted photocatalytic oxidation of toluene into benzaldehyde on CdIn2S4-CdS: synergetic effect of compact heterojunction and S-vacancy.ACS Catal2021;11:2492-503

[102]

Gao S,Chen F.Confinement of CsPbBr3 perovskite nanocrystals into extra-large-pore zeolite for efficient and stable photocatalytic hydrogen evolution.Angew Chem Int Ed Engl2024;63:e202319996

[103]

Cortés-Villena A,Cunha C.Engineering metal halide perovskite nanocrystals with BODIPY dyes for photosensitization and photocatalytic applications.J Am Chem Soc2024;146:14479-92 PMCID:PMC11140745

[104]

Lee J,Tüysüz H.Solar-light-driven photocatalytic oxidative coupling of phenol derivatives over bismuth-based porous metal halide perovskites.Angew Chem Int Ed Engl2024;63:e202404496

[105]

Lopes JC,Sampaio MJ,García H.Selective oxidative coupling of amines through light-activated bismuth halide perovskites.ChemCatChem2024;16:e202301432

[106]

Mondal S,Bera S.CsPbBr3 perovskite polyhedral nanocrystal photocatalysts for decarboxylative alkylation via Csp3–H bond activation of unactivated ethers.ACS Catal2024;14:6633-43

[107]

Song J,Zhang H.In situ growth of lead-free perovskite Cs2AgBiBr6 on a flexible ultrathin carbon nitride sheet for highly efficient photocatalytic benzylic C(sp3)−H bond activation.Chem Eng J2023;453:139748

[108]

Bai ZJ,Wang BH.Tuning photocatalytic performance of Cs3Bi2Br9 perovskite by g-C3N4 for C(sp3)-H bond activation.Nano Res2023;16:6104-12

[109]

Zhao Y,Wang Q.Anions-exchange-induced efficient carrier transport at CsPbBrxCl3-x/TiO2 interface for photocatalytic activation of C(sp3)−H bond in toluene oxidation.ChemCatChem2021;13:2592-8

[110]

Cui Z,Fu H.Composite of lead-free halide perovskite Cs3Bi2Br9 with TiO2 as an efficient photocatalyst for C(sp3)−H bond activation.Appl Catal B Environ2023;333:122812

[111]

Zhou B,Chong Y.Modulating adsorption–redox sites and charge separation of Cs3Bi2Br9-x@AgBr core–shell heterostructure for selective toluene photooxidation.ACS Energy Lett2024;9:1743-52

[112]

Chai Z,Tan Y.Enhanced photocatalytic activity for selective oxidation of toluene over cubic–hexagonal CdS phase junctions.Ind Eng Chem Res2021;60:11106-16

[113]

Deng J,Zhang J.Cs3Bi2Br9/BiOBr S-scheme heterojunction for selective oxidation of benzylic C-H bonds.J Mater Sci Technol2024;180:150-9

[114]

Wongthep S,Tantraviwat D.New visible-light-driven Bi2MoO6/Cs3Sb2Br9 heterostructure for selective photocatalytic oxidation of toluene to benzaldehyde.J Colloid Interface Sci2024;655:32-42

[115]

Cheng C,Zhu B,Zhang L.Verifying the charge-transfer mechanism in S-scheme heterojunctions using femtosecond transient absorption spectroscopy.Angew Chem Int Ed Engl2023;62:e202218688

[116]

Li F,Liao Y,Lv K.Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction.Nat Commun2023;14:3901 PMCID:PMC10317968

[117]

Jiang X,Shu Y.In-situ assembled S-scheme heterojunction of CsPbBr3 nanocrystals and W18O49 ultrathin nanowires for enhanced bifunctional photocatalysis.Appl Catal B Environ2024;348:123840

[118]

Bai S,Li Z.Facet-engineered surface and interface design of photocatalytic materials.Adv Sci2017;4:1600216 PMCID:PMC5238752

[119]

Liu G,Pan J,Lu GQ.Titanium dioxide crystals with tailored facets.Chem Rev2014;114:9559-612

[120]

Sajan CP,Al-ghamdi AA,Cao S.TiO2 nanosheets with exposed {001} facets for photocatalytic applications.Nano Res2016;9:3-27

[121]

Xiao C,Xue P.High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts.Joule2020;4:2562-98

[122]

Yang X,Zhang B,Chen Z.Facet-dependent Bi2MoO6 for highly efficient photocatalytic selective oxidation of sp3 C–H bonds using O2 as an oxidant.Catal Sci Technol2023;13:1996-2000

[123]

Li C,Xiao Y.Single-crystal oxygen-rich bismuth oxybromide nanosheets with highly exposed defective {10-1} facets for the selective oxidation of toluene under blue LED irradiation.J Colloid Interface Sci2024;668:426-36

[124]

Zhou G,Dong F.Lewis acid sites in (110) facet-exposed BiOBr promote C–H activation and selective photocatalytic toluene oxidation.ACS Catal2024;14:4791-8

[125]

Zhu H,Meng F.Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors.Nat Mater2015;14:636-42

[126]

Zhou N,Eisler CN.Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy.Sci Adv2019;5:eaav8141 PMCID:PMC6544451

[127]

Zhang G,Wang L.Inorganic perovskite photocatalysts for solar energy utilization.Chem Soc Rev2016;45:5951-84

[128]

Wang W,Shao Z.Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment.Chem Soc Rev2015;44:5371-408

[129]

Katan C,Even J.Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors.Chem Rev2019;119:3140-92

[130]

Wang H,He X,Zhang X.An excitonic perspective on low-dimensional semiconductors for photocatalysis.J Am Chem Soc2020;142:14007-22

[131]

Zhang K,Liu Y.Two-dimensional Bi2WxMo1-xO6 solid solution nanosheets for enhanced photocatalytic toluene oxidation to benzaldehyde.Appl Cataly B Environ2022;315:121545

[132]

Bai Z,Mao Y.Lead-free Dion-Jacobson layered double perovskite as a photocatalyst for toluene oxidation.Cell Rep Phys Sci2023;4:101591

[133]

Mai H,Lu J.Synthesis of layered lead-free perovskite nanocrystals with precise size and shape control and their photocatalytic activity.J Am Chem Soc2023;145:17337-50

[134]

Dai Y,Ochoa-Hernández C,Tüysüz H.A supported bismuth halide perovskite photocatalyst for selective aliphatic and aromatic C-H bond activation.Angew Chem Int Ed Engl2020;59:5788-96 PMCID:PMC7154683

[135]

Zhang H,Dong Y,Chen H.Constructing a Cs3Sb2Br9/g-C3N4 hybrid for photocatalytic aromatic C(sp3)-H bond activation.Solar RRL2021;5:2100559

[136]

Yi J,Lu S.High-efficiency visible-light-driven oxidation of primary C-H bonds in toluene over a CsPbBr3 perovskite supported by hierarchical TiO2 nanoflakes.Nanoscale2023;15:14584-94

[137]

Guo Y,Zhao Y.In-situ anchoring Pb-free Cs3Bi2Br9@BiOBr quantum dots on NHx-rich silica with enhanced blue emission and satisfactory stability for photocatalytic toluene oxidation.ChemSusChem2022;15:e202200793

[138]

Yu B,Wang X.Helical Microporous nanorods assembled by polyoxometalate clusters for the photocatalytic oxidation of toluene.Angew Chem Int Ed Engl2021;60:17404-9

[139]

Liu L.Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles.Chem Rev2018;118:4981-5079 PMCID:PMC6061779

[140]

Gao C,Long R,Zhu J.Heterogeneous single-atom photocatalysts: fundamentals and applications.Chem Rev2020;120:12175-216

[141]

Su L,Ma X,Zhan S.Regulating local electron density of iron single sites by introducing nitrogen vacancies for efficient photo-fenton process.Angew Chem Int Ed Engl2021;60:21261-6

[142]

Liu Y,Huang H.Improving CO2 photoconversion with ionic liquid and Co single atoms.Nat Commun2023;14:1457 PMCID:PMC10020152

[143]

Rocha GFSR,Rogolino A.Carbon nitride based materials: more than just a support for single-atom catalysis.Chem Soc Rev2023;52:4878-932

[144]

Therrien AJ,Marcinkowski MD.An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation.Nat Catal2018;1:192-8

[145]

Lu Y,Yu L.Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts.Nat Catal2019;2:149-56

[146]

Han GF,Rykov AI.Abrading bulk metal into single atoms.Nat Nanotechnol2022;17:403-7

[147]

Zhang H,Dong J.Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework.Angew Chem Int Ed Engl2016;55:14310-4

[148]

Dolgopolova EA,Martin CR.Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements.Chem Soc Rev2018;47:4710-28

[149]

Wang Q.State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis.Chem Rev2020;120:1438-511

[150]

Xu C,Wan G.Turning on visible-light photocatalytic C-H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer.J Am Chem Soc2019;141:19110-7

[151]

da Silva MAR,Filho JBG.Single-atoms on crystalline carbon nitrides for selective C-H photooxidation: a bridge to achieve homogeneous pathways in heterogeneous materials.Adv Mater2023;35:e2304152

[152]

Xie J,Guo J.Highly selective oxidation of benzene to phenol with air at room temperature promoted by water.Nat Commun2023;14:4431 PMCID:PMC10363151

[153]

Bai S,Gao C.Defect engineering in photocatalytic materials.Nano Energy2018;53:296-336

[154]

Pastor E,Selim S,Bakulin AA.Electronic defects in metal oxide photocatalysts.Nat Rev Mater2022;7:503-21

[155]

Wang Z,You J,Wang L.Defect engineering in photocatalysts and photoelectrodes: from small to big.Acc Mater Res2022;3:1127-36

[156]

Zafar Z,Li J.Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies.Energy Environ Mater2022;5:68-114

[157]

Zhang N,Xiong Y.Defect engineering: a versatile tool for tuning the activation of key molecules in photocatalytic reactions.J Energy Chem2019;37:43-57

[158]

Li X,Guo H.Tailoring bismuth defects in Bi2WO6 nanosheets for photocatalytic C–H activation.J Mater Chem A2024;12:11841-7

[159]

Wang H,Li D.Achieving high selectivity in photocatalytic oxidation of toluene on amorphous BiOCl nanosheets coupled with TiO2.J Am Chem Soc2023;145:16852-61

[160]

Huang H,Weng B.Metal halide perovskite based heterojunction photocatalysts.Angew Chem Int Ed Engl2022;61:e202203261

[161]

Xu D,Chen JS.Design of the synergistic rectifying interfaces in mott-schottky catalysts.Chem Rev2023;123:1-30

[162]

Su K,Zeng B.Visible-light-driven selective oxidation of toluene into benzaldehyde over nitrogen-modified Nb2O5 nanomeshes.ACS Catal2020;10:1324-33

[163]

Ding YF,Cai MQ.Enhanced photocatalytic toluene oxidation performance induced by two types of cooperative fluorine doping in polymeric carbon nitride with the first-principles calculations.J Colloid Interface Sci2023;630:452-9

[164]

Chen R,Ma Y,Lang X.Designed synthesis of a 2D Porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis.Angew Chem Int Ed Engl2019;58:6430-4

[165]

Zhang P,Wang Y.Surface Ru-H bipyridine complexes-grafted TiO2 nanohybrids for efficient photocatalytic CO2 methanation.J Am Chem Soc2023;145:5769-77

[166]

Zhang Z,Wang Y.Revealing the A-site effect of lead-free A3Sb2Br9 perovskite in photocatalytic C(sp3)-H bond activation.Angew Chem Int Ed Engl2020;59:18136-9

[167]

Fu H,Qiu D.A library of rare earth oxide ultrathin nanowires with polymer-like behaviors.Angew Chem Int Ed Engl2022;61:e202212251

[168]

Khoo RSH,Yang S.Postsynthetic modification of the nonanuclear node in a zirconium metal-organic framework for photocatalytic oxidation of hydrocarbons.J Am Chem Soc2023;145:24052-60 PMCID:PMC10636760

[169]

Zhang Q,Lei Y.Cl- mediates direct and selective conversion of inert C(sp3)-H bonds into aldehydes/ketones.Angew Chem Int Ed Engl2023;62:e202304699

[170]

Zhang H,Zheng A.Enhanced charge transfer process and photocatalytic activity over a phosphonate-based MOF via amorphization strategy.Angew Chem Int Ed Engl2024;63:e202400965

[171]

Yoshizawa M,Kawano M,Fujita M.Alkane oxidation via photochemical excitation of a self-assembled molecular cage.J Am Chem Soc2004;126:9172-3

[172]

Furutani Y,Kawano M,Yoshizawa M.In situ spectroscopic, electrochemical, and theoretical studies of the photoinduced host-guest electron transfer that precedes unusual host-mediated alkane photooxidation.J Am Chem Soc2009;131:4764-8

[173]

Gera R,Jha A.Light-induced proton-coupled electron transfer inside a nanocage.J Am Chem Soc2014;136:15909-12

[174]

Zhang Z,Huang H.Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6.Angew Chem Int Ed Engl2019;58:7263-7

[175]

Romani L,Ambrosio F.Water-stable DMASnBr3 lead-free perovskite for effective solar-driven photocatalysis.Angew Chem Int Ed Engl2021;60:3611-8

[176]

Zhou P,Chao Y.Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production.Nat Commun2021;12:4412 PMCID:PMC8292376

[177]

Wu Y,Zhang Q.An organometal halide perovskite supported Pt single-atom photocatalyst for H2 evolution.Energy Environ Sci2022;15:1271-81

[178]

Bai Z,Zeng T.Cs3Bi2Br9 nanodots stabilized on defective BiOBr nanosheets by interfacial chemical bonding: modulated charge transfer for photocatalytic C(sp3)–H bond activation.ACS Catal2022;12:15157-67

[179]

Dai Y.Rapid acidic media growth of Cs3Bi2Br9 halide perovskite platelets for photocatalytic toluene oxidation.Solar RRL2021;5:2100265

[180]

Mu C,Meng X,Tong Z.In situ characterization techniques applied in photocatalysis: a review.Adv Mater Interfaces2023;10:2201842

[181]

Zhang H,Zhang J.Metal-sulfide-based heterojunction photocatalysts: principles, impact, applications, and in-situ characterization.Chinese J Catal2023;49:42-67

[182]

Bie C,Cheng B,Fan J.Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst.Adv Mater2021;33:e2003521

[183]

Shen H,Hao L,Strunk J.Photocatalytic nitrogen reduction to ammonia: insights into the role of defect engineering in photocatalysts.Nano Res2022;15:2773-809

[184]

Yang W,Tan J,Moon J.Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting.Chem Soc Rev2019;48:4979-5015

[185]

Bonke SA,Schnegg A.In situ electron paramagnetic resonance spectroscopy for catalysis.Nat Rev Method Prime2021;1:33

[186]

Zhao ZJ,Xiong C.Hydroxyl-mediated non-oxidative propane dehydrogenation over VOx/γ-Al2O3 catalysts with improved stability.Angew Chem Int Ed Engl2018;57:6791-5

[187]

Qi Z,Zhang S,Somorjai GA.Mechanism of methanol decomposition over single-site Pt1/CeO2 catalyst: a DRIFTS study.J Am Chem Soc2021;143:60-4

[188]

Wang X,Ziarati A,Bürgi T.Insight into the transient inactivation effect on Au/TiO2 catalyst by in-situ DRIFT and UV-vis spectroscopy.Nat Commun2022;13:5458 PMCID:PMC9482617

[189]

Paul R,Das N.Tweaking photo CO2 reduction by altering lewis acidic sites in metalated-porous organic polymer for adjustable H2/CO ratio in syngas production.Angew Chem Int Ed Engl2023;62:e202311304

[190]

Li Y,Liu L,Zhang D.Water-resistance-based S-scheme heterojunction for deep mineralization of toluene.Angew Chem Int Ed Engl2024;63:e202319432

[191]

Zhou E,Zhang X,Wang Y.Cyanide-based covalent organic frameworks for enhanced overall photocatalytic hydrogen peroxide production.Angew Chem Int Ed Engl2024;63:e202400999

[192]

Meunier FC.Pitfalls and benefits of in situ and operando diffuse reflectance FT-IR spectroscopy (DRIFTS) applied to catalytic reactions.React Chem Eng2016;1:134-41

[193]

Meunier FC.Hydrogenation of CO and CO2: contributions of IR operando studies.Catal Today2023;423:113863

[194]

Zaera F.New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions.Chem Soc Rev2014;43:7624-63

[195]

Duan M,Li H.Synergizing inter and intraband transitions in defective tungsten oxide for efficient photocatalytic alcohol dehydration to alkenes.JACS Au2022;2:1160-8 PMCID:PMC9131368

[196]

Wang K,Xie H,Wang M.In-situ XPS reveals the interfacial engineering of Co/Ce-BDC with graphdiyne (CnH2n-2) for effective photocatalytic H2 evolution.J Alloys Compd2024;982:173757

[197]

Feng N,Zheng A.Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations.J Am Chem Soc2013;135:1607-16

[198]

Zhang F,Ding B,Li N.Electrospinning photocatalysis meet in situ irradiated XPS: recent mechanisms advances and challenges.Small2023;19:e2303867

[199]

Xu F,Cheng B.Direct Z-scheme TiO2/NiS core–shell hybrid nanofibers with enhanced photocatalytic H2-production activity.ACS Sustain Chem Eng2018;6:12291-8

[200]

Wang L,Ai Y.Tracking heterogeneous interface charge reverse separation in SrTiO3/NiO/NiS nanofibers with in situ irradiation XPS.Adv Funct Mater2023;33:2306466

[201]

Wang R,Qiu Z,Ding J.Nanoscale 2D g-C3N4 decorating 3D hierarchical architecture LDH for artificial photosynthesis and mechanism insight.Chem Eng J2022;448:137338

[202]

Zhang N.Dynamic characterization for artificial photosynthesis through in situ X-ray photoelectron spectroscopy.Curr Opin Green Sust2023;41:100796

[203]

Oversteeg CH, Doan HQ, de Groot FM, Cuk T. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts.Chem Soc Rev2017;46:102-25

[204]

Singh J,van Bokhoven JA.Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies.Chem Soc Rev2010;39:4754-66

[205]

Timoshenko J.In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy.Chem Rev2021;121:882-961 PMCID:PMC7844833

[206]

Lin SC,Chiu SY.Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction.Nat Commun2020;11:3525 PMCID:PMC7360608

[207]

Samanta B,Illas F.Challenges of modeling nanostructured materials for photocatalytic water splitting.Chem Soc Rev2022;51:3794-818

[208]

Ong WJ,Ng YH,Chai SP.Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?.Chem Rev2016;116:7159-329

[209]

Majek M.Mechanistic perspectives on organic photoredox catalysis for aromatic substitutions.Acc Chem Res2016;49:2316-27

[210]

Wu M,Xiang W.Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides.Chem Eng J2020;387:124101

[211]

Wang P,An X.Generation of abundant defects in Mn-Co mixed oxides by a facile agar-gel method for highly efficient catalysis of total toluene oxidation.Appl Catal B Environ2021;282:119560

[212]

Yang W,Wan J.Dual-site oxygen activation for enhanced photocatalytic aerobic oxidation by S-scheme Ni2P/Bi3O4Br-OVs heterojunction.Chem Eng J2023;452:139425

[213]

Qian H,Zhang W.Construction of electron transport channels and oxygen adsorption sites to modulate reactive oxygen species for photocatalytic selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran.Appl Catal B Environ2022;319:121907

[214]

Liu L,Xu C.Exceptional formaldehyde oxidation at room temperature on Co single-atom functionalized TiO2 nanowires via highly effective O2 activation.Appl Catal B Environ2024;344:123634

[215]

DeCoste JB,Fuller PE.Metal-organic frameworks for oxygen storage.Angew Chem Int Ed Engl2014;53:14092-5

[216]

Murray LJ,Yano J.Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2.J Am Chem Soc2010;132:7856-7

[217]

Popczun EJ,Natesakhawat S.Temperature tunability in Sr1-xCaxFeO3-δ for reversible oxygen storage: a computational and experimental study.J Mater Chem A2020;8:2602-12

[218]

Ma J,Zhang C,He H.Novel CeMnaOx catalyst for highly efficient catalytic decomposition of ozone.Appl Catal B Environ2020;264:118498

[219]

Liu H,Sun C.Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3.Appl Catal B Environ2019;244:671-83

[220]

Li X,Lu J.Rational atom substitution to obtain efficient, lead-free photocatalytic perovskites assisted by machine learning and DFT calculations.Angew Chem Int Ed Engl2023;62:e202315002

[221]

Masood H,Teoh WY,Amal R.Machine learning for accelerated discovery of solar photocatalysts.ACS Catal2019;9:11774-87

[222]

Ge L,Li X.Machine learning integrated photocatalysis: progress and challenges.Chem Commun2023;59:5795-806

[223]

Zhang C,Fernando JFS,von Treifeldt JE.Recent progress of in situ transmission electron microscopy for energy materials.Adv Mater2020;32:e1904094

[224]

Zhao B,Chen F.Unveiling the activity origin of iron nitride as catalytic material for efficient hydrogenation of CO2 to C2+ hydrocarbons.Angew Chem Int Ed Engl2021;60:4496-500

[225]

Twilton J,Zhang P,Evans RW.The merger of transition metal and photocatalysis.Nat Rev Chem2017;1:BFs415700170052

[226]

Qi M,Zhang Z,Wang Q.Controllable synthesis of MnO2/iron mesh monolithic catalyst and its significant enhancement for toluene oxidation.Chinese Chem Lett2023;34:107437

[227]

Zhou J,Liu H,Wang J.VMoNb/CeO2 as an efficient catalyst for the gas-phase selective oxidation of toluene to benzaldehyde.Mol Catal2024;569:114570

[228]

Rawlings AJ,Wills M.C-N bond formation between alcohols and amines using an iron cyclopentadienone catalyst.Org Lett2015;17:1086-9

[229]

Pazo-Carballo C,Camu E.Theoretical and experimental study for cross-coupling aldol condensation over mono- and bimetallic UiO-66 nanocatalysts.ACS Appl Nano Mater2023;6:5422-33

[230]

Suga T.Nickel-catalyzed cross-electrophile coupling between benzyl alcohols and aryl halides assisted by titanium co-reductant.Org Lett2018;20:7846-50

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/