Photoredox/nickel dual-catalyzed reductive C(sp2)–Si cross-coupling

Junjie Liu , Weiming Yuan

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (3) : 39

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (3) :39 DOI: 10.20517/cs.2024.89
review-article

Photoredox/nickel dual-catalyzed reductive C(sp2)–Si cross-coupling

Author information +
History +
PDF

Abstract

Nickel-catalyzed cross-electrophile coupling of carbon-electrophiles and silicon-electrophiles has recently emerged as a powerful tool for C–Si bond formations to synthesize highly valuable organosilanes. This reductive coupling strategy eliminates the manipulation of highly reactive organometallic reagents, thereby leading to a good functional group tolerance and a high step economy. However, the reported reductive C–Si couplings have to use stoichiometric amounts of Zn or Mn dust as a reductant, which somehow limits the synthetic application. Herein, we reported a novel cross-electrophile coupling of aryl halides with chlorosilanes enabled by dual photoredox/nickel catalysis. Instead of using metallic reductants, a mild and readily available α-silylamine is selected as a reliable organic reductant. Various vinyl chlorosilanes and chlorohydrosilanes were coupled smoothly. This new catalytic protocol offers an alternative approach for facile synthesis of organosilanes.

Keywords

Organosilanes / reductive coupling / organic reductants / photoredox catalysis / nickel catalysis / chlorosilanes

Cite this article

Download citation ▾
Junjie Liu, Weiming Yuan. Photoredox/nickel dual-catalyzed reductive C(sp2)–Si cross-coupling. Chemical Synthesis, 2025, 5(3): 39 DOI:10.20517/cs.2024.89

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ramesh R.Quest for novel chemical entities through incorporation of silicon in drug scaffolds.J Med Chem2018;61:3779-98

[2]

Sore HF,Spring DR.Palladium-catalysed cross-coupling of organosilicon reagents.Chem Soc Rev2012;41:1845-66

[3]

Franz AK.Organosilicon molecules with medicinal applications.J Med Chem2013;56:388-405

[4]

Langkopf E.Uses of silicon-containing compounds in the synthesis of natural products.Chem Rev1995;95:1375-408

[5]

Hiyama T.Organosilicon chemistry: novel approaches and reactions. Wiley-VCH: Weinheim; 2019.

[6]

Li B.Metal-catalyzed silylation of sp3C-H bonds.Chem Soc Rev2021;50:5062-85

[7]

Du X.Advances in base-metal-catalyzed alkene hydrosilylation.ACS Catal2017;7:1227-43

[8]

Richter SC.Emerging strategies for C–H silylation.Trends Chem2020;2:13-27

[9]

Bähr S,Oestreich M.C(sp3)–Si cross-coupling.ACS Catal2019;9:16-24

[10]

Korch KM.Cross-coupling of heteroatomic electrophiles.Chem Rev2019;119:8192-228 PMCID:PMC6620169

[11]

Murakami K,Yorimitsu H.Silver-catalyzed transmetalation between chlorosilanes and aryl and alkenyl Grignard reagents for the synthesis of tetraorganosilanes.Angew Chem Int Ed Engl2008;47:5833-5

[12]

Cinderella AP,Watson DA.Palladium-catalyzed cross-coupling of silyl electrophiles with alkylzinc halides: a silyl-negishi reaction.J Am Chem Soc2017;139:7741-4 PMCID:PMC5531279

[13]

Vulovic B,Watson DA.Palladium-catalyzed cross-coupling of monochlorosilanes and grignard reagents.ACS Catal2017;7:8113-7 PMCID:PMC5984048

[14]

Naganawa Y,Sakamoto K.Nickel-catalyzed selective cross-coupling of chlorosilanes with organoaluminum reagents.ChemCatChem2019;11:3756-9

[15]

Chu CK,Fu GC.Silicon-carbon bond formation via nickel-catalyzed cross-coupling of silicon nucleophiles with unactivated secondary and tertiary alkyl electrophiles.J Am Chem Soc2016;138:6404-7 PMCID:PMC5031417

[16]

Xue W,Grimme S.Copper-catalyzed cross-coupling of silicon pronucleophiles with unactivated alkyl electrophiles coupled with radical cyclization.J Am Chem Soc2016;138:14222-5

[17]

Xue W,Oestreich M.Bench-stable stock solutions of silicon grignard reagents: application to iron- and cobalt-catalyzed radical C(sp3)-Si cross-coupling reactions.Angew Chem Int Ed Engl2018;57:12141-5

[18]

Zarate C,Martin R.A mild and ligand-free Ni-catalyzed silylation via C-OMe cleavage.J Am Chem Soc2017;139:1191-7

[19]

Yamanoi Y,Sato J,Nishihara H.Efficient preparation of monohydrosilanes using palladium-catalyzed Si-C bond formation.Org Lett2007;9:4543-6

[20]

Hamze A,Alami M.Platinum oxide catalyzed silylation of aryl halides with triethylsilane: an efficient synthetic route to functionalized aryltriethylsilanes.Org Lett2006;8:931-4

[21]

Yuan W,Oestreich M.Custom hydrosilane synthesis based on monosilane.Chem2018;4:1443-50

[22]

Yuan W,Oestreich M.Palladium-catalyzed three-component reaction of dihydrosilanes and vinyl iodides in the presence of alcohols: rapid assembly of silyl ethers of tertiary silanes.Chem Eur J2018;24:19175-8

[23]

Sun H,Teng H.3-Alkyl-2-pyridyl directing group-enabled C2 selective C-H silylation of indoles and pyrroles via an iridium catalyst.J Org Chem2022;87:13346-51

[24]

Liu S,Landais Y.Dual photoredox nickel-catalyzed silylation of aryl/heteroaryl bromides using hydrosilanes.Chem Commun2023;59:11369-72

[25]

Neil B,Fensterbank L.Transition-metal-free silylation of unactivated C(sp2)–H bonds with tert-butyl-substituted silyldiazenes.ACS Catal2021;11:13085-90

[26]

Weix DJ.Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles.Acc Chem Res2015;48:1767-75 PMCID:PMC4484513

[27]

Gu J,Xue W.Nickel-catalyzed reductive coupling of alkyl halides with other electrophiles: concept and mechanistic considerations.Org Chem Front2015;2:1411-21

[28]

Yi L,Chen K,Rueping M.Nickel-catalyzed reductive cross-couplings: new opportunities for carbon–carbon bond formations through photochemistry and electrochemistry.CCS Chem2022;4:9-30

[29]

Qian P,Wang YE.Catalytic enantioselective reductive domino alkyl arylation of acrylates via nickel/photoredox catalysis.Nat Commun2021;12:6613 PMCID:PMC8595378

[30]

Yang Y,Shu X.Transition-metal-catalyzed cross-coupling of chlorosilanes.Synthesis2023;55:868-76

[31]

Pang X.Nickel-catalyzed reductive coupling of chlorosilanes.Chem Eur J2023;29:e202203362

[32]

Duan J,Xu GL.Cross-electrophile C(sp2)-Si coupling of vinyl chlorosilanes.Angew Chem Int Ed Engl2020;59:23083-8

[33]

Pan QQ,Pang X.Nickel-catalyzed cross-electrophile 1,2-silyl-arylation of 1,3-dienes with chlorosilanes and aryl bromides.Angew Chem Int Ed Engl2023;62:e202215703

[34]

Zhao ZZ,Wei XX,Shu XZ.Nickel-catalyzed reductive C(sp2)-Si coupling of chlorohydrosilanes via Si-Cl cleavage.Angew Chem Int Ed Engl2022;61:e202200215

[35]

Qi L,Wei XX,Liu Z.Nickel-catalyzed reductive [4 + 1] sila-cycloaddition of 1,3-dienes with dichlorosilanes.J Am Chem Soc2023;145:13008-14

[36]

Duan J,Qi L,Pang X.Nickel-catalyzed cross-electrophile C(sp3)-Si coupling of unactivated alkyl bromides with vinyl chlorosilanes.Org Lett2021;23:7855-9

[37]

Qi L,Yin K,Wei X.Mn-mediated reductive C(sp3)–Si coupling of activated secondary alkyl bromides with chlorosilanes.Chin Chem Lett2022;33:5061-4

[38]

Pang X,Shu XZ.Reductive cross-coupling of unreactive electrophiles.Acc Chem Res2022;55:2491-509

[39]

Zhang L.Nickel-catalyzed, reductive C(sp3)-Si cross-coupling of α-cyano alkyl electrophiles and chlorosilanes.Angew Chem Int Ed Engl2021;60:18587-90 PMCID:PMC8456968

[40]

Xing M,Zhang C.Nickel-catalyzed reductive cross-coupling of alkyl bromides and chlorosilanes.Org Lett2021;23:7645-9

[41]

Sun J,Gu R,Liu A.Regioselective Ni-catalyzed reductive alkylsilylation of acrylonitrile with unactivated alkyl bromides and chlorosilanes.Nat Commun2022;13:7093 PMCID:PMC9675790

[42]

Xing D,Cai D,Jiang H.Cobalt-catalyzed cross-electrophile coupling of alkynyl sulfides with unactivated chlorosilanes.Nat Commun2024;15:4502 PMCID:PMC11130142

[43]

Li C,Zeng X.Cross-electrophile silylation of aryl carboxylic esters with hydrochlorosilanes by SiH-directed and Cr-catalyzed couplings.ACS Catal2023;13:12062-73

[44]

Zhao H.Three-component reductive conjugate addition/aldol tandem reaction enabled by nickel/photoredox dual catalysis.Chem Sci2023;14:1485-90 PMCID:PMC9906790

[45]

Liu J,Zhao H.Nickel/photoredox dual-catalyzed reductive cross-coupling of aryl halides and aldehydes.Org Chem Front2024;11:1205-10

[46]

Xi X,Li W.From esters to ketones via a photoredox-assisted reductive acyl cross-coupling strategy.Angew Chem Int Ed Engl2022;61:e202114731

[47]

Xi X,Yuan W.Nickel-catalyzed three-component alkylacylation of alkenes enabled by a photoactive electron donor-acceptor complex.Org Lett2022;24:3938-43

[48]

Chen Y,Yuan W.Photoinduced nickel-catalyzed reductive acyl cross-coupling: facile access to all carbon quaternary aliphatic ketones.Org Chem Front2023;10:3669-75

[49]

Shields BJ.Direct C(sp3)-H cross coupling enabled by catalytic generation of chlorine radicals.J Am Chem Soc2016;138:12719-22 PMCID:PMC5215658

[50]

Prier CK,MacMillan DW.Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis.Chem Rev2013;113:5322-63 PMCID:PMC4028850

[51]

Zhang P,MacMillan DW.Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling.J Am Chem Soc2016;138:8084-7 PMCID:PMC5103281

[52]

Cong F,Day CS.Dual catalytic strategy for forging sp2-sp3 and sp3-sp3 architectures via β-scission of aliphatic alcohol derivatives.J Am Chem Soc2020;142:20594-9

[53]

Yi J,Kammer LM,Molander GA.Deaminative reductive arylation enabled by nickel/photoredox dual catalysis.Org Lett2019;21:3346-51 PMCID:PMC6512806

[54]

Remeur C,Patel NR.Aminomethylation of aryl halides using α-silylamines enabled by Ni/photoredox dual catalysis.ACS Catal2017;7:6065-9 PMCID:PMC5771658

AI Summary AI Mindmap
PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/