Sub-2 nm PtBi alloy nanoparticles on Bi-N-C single-atom catalyst for selective oxidation of glycerol to 1,3-dihydroxyacetone

Tongyu Tang , Hai Zhang , Hao-Fan Wang , Hongjuan Wang , Yonghai Cao , Lingyun Zhou , Hao Yu

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) : 28

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) :28 DOI: 10.20517/cs.2024.84
review-article

Sub-2 nm PtBi alloy nanoparticles on Bi-N-C single-atom catalyst for selective oxidation of glycerol to 1,3-dihydroxyacetone

Author information +
History +
PDF

Abstract

Nanoscale metal particle-decorated single-atom catalysts (SACs) have been widely used in the fields of photocatalysis, electrocatalysis and thermal catalysis due to the combination of the advantages of nanoparticles and SACs. Herein, a strategy based on Pt-Bi atomic exchange is proposed for the formation of ultrafine (sub-2 nm) PtBi nanoclusters on single atomic Bi-N-C. The dynamic structural evolution between single atomic Bi-N-C on nitrogen-doped carbon nanosheets and Pt nanoclusters on the reconfiguration of stable PtBi alloy nanoparticles was demonstrated through a spherical aberration-corrected transmission electron microscope, X-ray absorption spectroscopy and density functional theory calculations. By our synthesis strategy, the Bi-N-C sites significantly improve the dispersion of PtBi alloy nanoparticles, resulting in a high turnover frequency of up to 224.4 h-1 and the 1,3-dihydroxyacetone selectivity of 77.4%, 3.5 times higher than that of commercial 5Pt/C. On the other hand, the strong interaction between SAC and nanoparticles enhanced the catalytic stability by preventing leaching of Bi. It opens new avenues toward the rational design of high-performance nanoparticle-SACs, enabled by the in-depth understanding of the interaction between nanoparticles and SACs, which determines the structure of real active sites.

Keywords

NP-SACs / sub-2 nm PtBi alloy nanoparticles / Pt-Bi atomic exchange / glycerol oxidation / 1,3-dihydroxyacetone

Cite this article

Download citation ▾
Tongyu Tang, Hai Zhang, Hao-Fan Wang, Hongjuan Wang, Yonghai Cao, Lingyun Zhou, Hao Yu. Sub-2 nm PtBi alloy nanoparticles on Bi-N-C single-atom catalyst for selective oxidation of glycerol to 1,3-dihydroxyacetone. Chemical Synthesis, 2025, 5(2): 28 DOI:10.20517/cs.2024.84

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gallezot P.Process options for converting renewable feedstocks to bioproducts.Green Chem2007;9:295

[2]

He Z,Yang G.Selective oxidation of glycerol over supported noble metal catalysts.Catal Today2021;365:162-71

[3]

Walgode PM,Rodrigues AE.A review of aerobic glycerol oxidation processes using heterogeneous catalysts: a sustainable pathway for the production of dihydroxyacetone.Catal Rev2021;63:422-511

[4]

Zope BN,Neurock M.Reactivity of the gold/water interface during selective oxidation catalysis.Science2010;330:74-8

[5]

Demirel-gülen S,Claus P.Liquid phase oxidation of glycerol over carbon supported gold catalysts.Catal Today2005;102-103:166-72

[6]

Garcia AC,van Nierop y Sanchez C.Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol.ACS Catal2016;6:4491-500

[7]

Liang D,Wang J,Hou Z.Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts.Catal Commun2009;10:1586-90

[8]

Ribeiro LS,Delgado JJ,Pereira MFR.Pd, Pt, and Pt-Cu catalysts supported on carbon nanotube (CNT) for the selective oxidation of glycerol in alkaline and base-free conditions.Ind Eng Chem Res2016;55:8548-56

[9]

Mondelli C,Grunwaldt J.Combined liquid-phase ATR-IR and XAS study of the Bi-promotion in the aerobic oxidation of benzyl alcohol over Pd/Al2O3.J Catal2007;252:77-87

[10]

Fernández-caso K,Andreu T.Coupling glycerol oxidation reaction using Ni-Co foam anodes to CO2 electroreduction in gas-phase for continuous co-valorization.Chem Eng J2024;480:147908

[11]

Purushothaman RKP,van Es D,Meeldijk J.An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support.Appl Catal B Environ2014;147:92-100

[12]

Roz A, Fongarland P, Dumeignil F, Capron M. Glycerol to glyceraldehyde oxidation reaction over pt-based catalysts under base-free conditions.Front Chem2019;7:156 PMCID:PMC6446717

[13]

Kimura H,Wakisaka T,Inaya Y.Selective oxidation of glycerol on a platinum-bismuth catalyst.Appl Catal A Gen1993;96:217-28

[14]

Garcia R,Gallezot P.Chemoselective catalytic oxidation of glycerol with air on platinum metals.Appl Catal A Gen1995;127:165-76

[15]

Hu W,Lowry B.Selective oxidation of glycerol to dihydroxyacetone over Pt-Bi/C catalyst: optimization of catalyst and reaction conditions.Ind Eng Chem Res2010;49:10876-82

[16]

Ning X,Yu H,Wang H.Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone.J Catal2016;335:95-104

[17]

Zhang B,Ren J,Xu G.PtBi intermetallic and PtBi intermetallic with the Bi-rich surface supported on porous graphitic carbon towards HCOOH electro-oxidation.Electrochim Acta2015;162:254-62

[18]

Feng Y,Lv F.Intermetallic PtBi Nanoplates boost oxygen reduction catalysis with superior tolerance over chemical fuels.Adv Sci2020;7:1800178

[19]

Xue W,Liang Y,Liu L.Promoting role of bismuth on hydrotalcite-supported platinum catalysts in aqueous phase oxidation of glycerol to dihydroxyacetone.Catalysts2018;8:20

[20]

Nie R,Shen L,Chen P.Selective oxidation of glycerol with oxygen in base-free solution over MWCNTs supported PtSb alloy nanoparticles.Appl Catal B Environ2012;127:212-20

[21]

Xiao Y,Varma A,Xiao G.An experimental and theoretical study of glycerol oxidation to 1,3-dihydroxyacetone over bimetallic Pt-Bi catalysts.AIChE J2017;63:705-15

[22]

Chen R,Wang L.Nanoscale metal particle modified single-atom catalyst: synthesis, characterization, and application.Adv Mater2024;36:e2304713

[23]

Kuai L,Liu S.Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation.Nat Commun2020;11:48 PMCID:PMC6946645

[24]

Zhang J,Gao Z.Importance of species heterogeneity in supported metal catalysts.J Am Chem Soc2022;144:5108-15

[25]

Yang H,Rao D.Designing superior bifunctional electrocatalyst with high-purity pyrrole-type CoN4 and adjacent metallic cobalt sites for rechargeable Zn-air batteries.Energy Storage Mater2022;46:553-62

[26]

He Z,Wang H,Peng F.Co-N-C-supported platinum catalyst: synergistic effect on the aerobic oxidation of glycerol.ACS Sustainable Chem Eng2020;8:19062-71

[27]

Huang N,Lu Y.Assembly of platinum nanoparticles and single-atom bismuth for selective oxidation of glycerol.J Mater Chem A2021;9:25576-84

[28]

Liu X,Shen X.Dynamic surface reconstruction of single-atom bimetallic alloy under operando electrochemical conditions.Nano Lett2020;20:8319-25

[29]

Jia L,Podyacheva OY.Pt nanoclusters stabilized by N-doped carbon nanofibers for hydrogen production from formic acid.J Catal2013;307:94-102

[30]

Ning X,Dong B.Electron transfer dependent catalysis of Pt on N-doped carbon nanotubes: effects of synthesis method on metal-support interaction.J Catal2017;348:100-9

[31]

Kresse G.Ab initio molecular dynamics for open-shell transition metals.Phys Rev B Condens Matter1993;48:13115-8

[32]

Kresse G.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B Condens Matter1996;54:11169-86

[33]

Kresse G.Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium.Phys Rev B Condens Matter1994;49:14251-69

[34]

Kresse G.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Comput Mater Sci1996;6:15-50

[35]

Kresse G.Ab initio molecular dynamics for liquid metals.Phys Rev B Condens Matter1993;47:558-61

[36]

Kresse G.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys Rev B1999;59:1758-75

[37]

Sun X,Chen J.Ultrasmall Ru nanoparticles highly dispersed on sulfur-doped graphene for HER with high electrocatalytic performance.ACS Appl Mater Interfaces2020;12:48591-7

[38]

He Z,Wang W.Elucidating interaction between palladium and N-doped carbon nanotubes: effect of electronic property on activity for nitrobenzene hydrogenation.ACS Catal2019;9:2893-901

[39]

Wang W,Wang Q,Wang H.Modifying carbon nanotubes supported palladium nanoparticles via regulating the electronic metal–carbon interaction for phenol hydrogenation.Chem Eng J2022;436:131758

[40]

Ao X,Zhao B.Atomically dispersed Fe-N-C decorated with Pt-alloy core-shell nanoparticles for improved activity and durability towards oxygen reduction.Energy Environ Sci2020;13:3032-40

[41]

Li X,Cheng S.Atomic structure evolution of pt-co binary catalysts: single metal sites versus intermetallic nanocrystals.Adv Mater2021;33:e2106371

[42]

Zhang H,Wang H,Cao Y.Topological conversion of nickel foams to monolithic single-atom catalysts.Adv Funct Mater2024;34:2312939

[43]

Zhang M,Chen J.A low-cost, durable bifunctional electrocatalyst containing atomic Co and Pt species for flow alkali-Al/acid hybrid fuel cell and Zn-Air battery.Adv Funct Mater2023;33:2303189

[44]

Liang L,Zhou H.Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media.Nano Energy2021;88:106221

[45]

Gong L,Xia F.Marriage of ultralow platinum and single-atom MnN4 moiety for augmented ORR and HER catalysis.ACS Catal2023;13:4012-20

[46]

Zeng Y,Li C.Regulating catalytic properties and thermal stability of Pt and PtCo Intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt.J Am Chem Soc2023;145:17643-55

[47]

Song Z,Wu D,Zhang L.Nitrogen-coordinated cobalt single atoms for achieving pt with superhigh power and stability in proton exchange membrane fuel cells.ACS Sustainable Chem Eng2023;11:9804-15

[48]

Zhao T,Liu J.Highly dispersed L12-Pt3Fe intermetallic particles supported on single atom Fe-Nx-Cy active sites for enhanced activity and durability towards oxygen reduction.Chin Chem Lett2023;34:107824

[49]

Guan J,Liu T.Intermetallic FePt@PtBi core-shell nanoparticles for oxygen reduction electrocatalysis.Angew Chem Int Ed Engl2021;60:21899-904

[50]

Wang Z,Hu Y.Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction.Nano Res2021;14:2790-6

[51]

Zhang E,Yu K.Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction.J Am Chem Soc2019;141:16569-73

[52]

Yue B,Tao H.CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation.J Mater Chem2008;18:1747

[53]

Chen W,Duan X.Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane.Chem Commun2014;50:2142-4

[54]

Ning X,Peng F.Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO.J Catal2015;325:136-44

[55]

Moulder J,Sobol W. Handbook of X-ray photoelectron spectroscopy. 1992. Available from: https://www.semanticscholar.org/paper/Handbook-of-X-Ray-Photoelectron-Spectroscopy-Moulder-Stickle/6165d59e158c88267b1154c167da68bfca644f4a. [Last accessed on 9 Oct 2024]

[56]

Ge S,Tang X.Revealing the size effect of ceria nanocube-supported platinum nanoparticles in complete propane oxidation.ACS Catal2024;14:2532-44

[57]

Tong T,Guo Y,Hu Y.The critical role of CeO2 crystal-plane in controlling Pt chemical states on the hydrogenolysis of furfuryl alcohol to 1,2-pentanediol.J Catal2018;365:420-8

[58]

Quan L,Liu J,Xia BY.Atomic Pt-N4 sites in porous N-doped nanocarbons for enhanced on-site chlorination coupled with H2 evolution in acidic water.Adv Funct Mater2023;33:2307643

[59]

Lei J,Qian G,Chen D.Size effects of Pt nanoparticles supported on carbon nanotubes for selective oxidation of glycerol in a base-free condition.Ind Eng Chem Res2014;53:16309-15

[60]

Ning X,Wang H,Peng F.Deactivation and regeneration of in situ formed bismuth-promoted platinum catalyst for the selective oxidation of glycerol to dihydroxyacetone.New J Chem2018;42:18837-43

[61]

Worz N,Claus P.Platinum-bismuth-catalyzed oxidation of glycerol: kinetics and the origin of selective deactivation.J Phys Chem C2010;114:1164-72

[62]

Zhang X,Wang X.Overcoming the deactivation of Pt/CNT by introducing CeO2 for selective base-free glycerol-to-glyceric acid oxidation.ACS Catal2020;10:3832-7

[63]

Yang CL,Yin P.Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells.Science2021;374:459-64

[64]

Zhang J,Li B.Ultralow platinum catalysts for high performance fuel cells: in situ encapsulation of platinum atoms and CoPt3 in 3D hollow nanoshells.J Mater Chem A2023;11:20488-96

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/