Insights into multivariate zeolitic imidazolate frameworks

Xianyang Zhang , Xingchuan Li , Zhanke Wang , Somboon Chaemchuen , Wanida Koo-amornpattana , Ang Qiao , Tongle Bu , Francis Verpoort , John Wang , Shichun Mu , Zongkui Kou

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) : 31

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) :31 DOI: 10.20517/cs.2024.83
review-article

Insights into multivariate zeolitic imidazolate frameworks

Author information +
History +
PDF

Abstract

With the explosive growth of research focused on building units and types of crystalline materials, disruptive changes in the physical and/or chemical properties of crystals have been discovered. As the most studied subclass of metal-organic frameworks, zeolitic imidazolate frameworks (ZIFs) have shown huge potential in a wide range of applications, such as gas separation, adsorption catalysis, and so on. Specifically, when formed with multivariate (MTV) linkers or multi-metallic ions, named MTV-ZIFs, they exhibit significant differences in their thermodynamics, kinetics and properties in applications. Unraveling MTV-ZIFs, ranging from their unique structures and sequences to performance and reaction mechanisms, is crucial to further advance and expand the ZIFs. In this review, we discuss the construction methodology and properties of MTV-ZIFs, classified by MTV organic linkers and nodes, and identify challenges and opportunities, particularly linked to the chemical synthesis corresponding to their new physical chemistry. Ultimately, we outline the future direction in designing and synthesizing MTV-ZIFs to further our understanding of these promising materials.

Keywords

Zeolitic imidazolate frameworks / multivariate / chemical synthesis

Cite this article

Download citation ▾
Xianyang Zhang, Xingchuan Li, Zhanke Wang, Somboon Chaemchuen, Wanida Koo-amornpattana, Ang Qiao, Tongle Bu, Francis Verpoort, John Wang, Shichun Mu, Zongkui Kou. Insights into multivariate zeolitic imidazolate frameworks. Chemical Synthesis, 2025, 5(2): 31 DOI:10.20517/cs.2024.83

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ding M,Jiang HL.Carbon capture and conversion using metal-organic frameworks and MOF-based materials.Chem Soc Rev2019;48:2783-828

[2]

Li J,Zhao G.Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions.Chem Soc Rev2018;47:2322-56

[3]

Karmakar A,Li J.Metal-organic frameworks as effective sensors and scavengers for toxic environmental pollutants.Natl Sci Rev2022;9:nwac091 PMCID:PMC9273335

[4]

Wang H,Zou R.Metal-organic frameworks for energy applications.Chem2017;2:52-80

[5]

Wu S,Wang L.MOF–ammonia working pairs in thermal energy conversion and storage.Nat Rev Mater2023;8:636-8

[6]

Liang Z,Xia D,Xu Q.Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion.Angew Chem Int Ed Engl2018;57:9604-33

[7]

Wang Q.State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis.Chem Rev2020;120:1438-511

[8]

Yang B,Kang DJ,Pang H.Architectural design and electrochemical performance of MOF-based solid-state electrolytes for high-performance secondary batteries.Interdiscip Mater2023;2:475-510

[9]

Guo J,Zhu Y.Metal-organic frameworks as catalytic selectivity regulators for organic transformations.Chem Soc Rev2021;50:5366-96

[10]

Luo R,Ju H.Reticular electrochemiluminescence nanoemitters: structural design and enhancement mechanism.Acc Chem Res2023;56:1920-30

[11]

Koo W,Kim I.Metal-organic frameworks for chemiresistive sensors.Chem2019;5:1938-63

[12]

Zhang LT,Han ST.The role of metal-organic frameworks in electronic sensors.Angew Chem Int Ed Engl2021;60:15192-212

[13]

Yang J.Metal-organic framework-based cancer theranostic nanoplatforms.VIEW2020;1:e20

[14]

He S,Li X.Metal-organic frameworks for advanced drug delivery.Acta Pharm Sin B2021;11:2362-95 PMCID:PMC8424373

[15]

Chen R,Wang Y.Biomimetic metal–organic frameworks for biological applications.Trend Chem2023;5:460-73

[16]

Cong W,Li H,Dalai AK.Metal–organic framework-based functional catalytic materials for biodiesel production: a review.Green Chem2021;23:2595-618

[17]

Konnerth H,Chen SS,Shieh F.Metal-organic framework (MOF)-derived catalysts for fine chemical production.Coord Chem Rev2020;416:213319

[18]

Freund R,Cohen SM.25 Years of reticular chemistry.Angew Chem Int Ed Engl2021;60:23946-74

[19]

Yaghi OM.The reticular chemist.Nano Lett2020;20:8432-4

[20]

Yaghi OM.Reticular chemistry in all dimensions.ACS Cent Sci2019;5:1295-300 PMCID:PMC6820066

[21]

Rungtaweevoranit B,Kalmutzki MJ.Spiers memorial lecture: progress and prospects of reticular chemistry.Faraday Discuss2017;201:9-45

[22]

Liu Y,Zhao Y.Weaving of organic threads into a crystalline covalent organic framework.Science2016;351:365-9

[23]

Liu Y,Treacy MMJ.The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry.Chem Soc Rev2018;47:4642-64

[24]

Madsen RSK,Sen J.Ultrahigh-field 67Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses.Science2020;367:1473-6 PMCID:PMC7325427

[25]

BASF News Releases. BASF becomes first company to successfully produce metal-organic frameworks on a commercial scale for carbon capture. 2023. Available from: https://www.basf.com/global/en/media/news-releases/2023/10/p-23-327.html. [Last accessed on 9 Oct 2024]

[26]

Hanikel N,Yaghi OM.MOF water harvesters.Nat Nanotechnol2020;15:348-55

[27]

Xu W.Metal-organic frameworks for water harvesting from air, anywhere, anytime.ACS Cent Sci2020;6:1348-54 PMCID:PMC7453559

[28]

Fathieh F,Kapustin EA,Yang J.Practical water production from desert air.Sci Adv2018;4:eaat3198 PMCID:PMC5993474

[29]

Hanikel N,Fathieh F.Rapid cycling and exceptional yield in a metal-organic framework water harvester.ACS Cent Sci2019;5:1699-706 PMCID:PMC6813556

[30]

Song W,Alawadhi AH.MOF water harvester produces water from Death Valley desert air in ambient sunlight.Nat Water2023;1:626-34

[31]

Zheng Z,Hanikel N.High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air.Nat Protoc2023;18:136-56

[32]

Neumann SE,Zheng Z,Tsao J.Harvesting water in the classroom.J Chem Educ2023;100:4482-7

[33]

Gagliardi L.Three future directions for metal–organic frameworks.Chem Mater2023;35:5711-2

[34]

Deng H,Furukawa H.Multiple functional groups of varying ratios in metal-organic frameworks.Science2010;327:846-50

[35]

Kong X,Yan F.Mapping of functional groups in metal-organic frameworks.Science2013;341:882-5

[36]

Helal A,Cordova KE.Multivariate metal-organic frameworks.Natl Sci Rev2017;4:296-8

[37]

Nam D,Hwang E.Multivariate porous platform based on metal-organic polyhedra with controllable functionality assembly.Matter2021;4:2460-73

[38]

Luo TY,Gan XY.Multivariate stratified metal-organic frameworks: diversification using domain building blocks.J Am Chem Soc2019;141:2161-8

[39]

Feng L,Li JL.Uncovering two principles of multivariate hierarchical metal-organic framework synthesis via retrosynthetic design.ACS Cent Sci2018;4:1719-26 PMCID:PMC6311690

[40]

Feng L,Zhang LL.Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks.J Am Chem Soc2018;140:2363-72

[41]

Wang J,Wu Y,Li Q.Generation of site-selective structural vacancies in a multinary metal-organic framework for enhanced catalysis.ACS Appl Mater Interfaces2023;15:31354-63

[42]

Tu B,Ning E.Heterogeneity within a mesoporous metal-organic framework with three distinct metal-containing building units.J Am Chem Soc2015;137:13456-9

[43]

Pang J,Qin J.Enhancing pore-environment complexity using a trapezoidal linker: toward stepwise assembly of multivariate quinary metal-organic frameworks.J Am Chem Soc2018;140:12328-32

[44]

Hu Y,Khoo RSH,Zhang X.Stepwise assembly of quinary multivariate metal-organic frameworks via diversified linker exchange and installation.J Am Chem Soc2023;145:13929-37 PMCID:PMC10311524

[45]

Abednatanzi S,Depauw H.Mixed-metal metal-organic frameworks.Chem Soc Rev2019;48:2535-65

[46]

Masoomi MY,Dhakshinamoorthy A.Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) functionality and design.Angew Chem Int Ed Engl2019;58:15188-205

[47]

Wang LJ,Furukawa H.Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals.Inorg Chem2014;53:5881-3

[48]

Brozek CK.Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5.J Am Chem Soc2013;135:12886-91

[49]

Liu Q,Deng H.Deciphering the spatial arrangement of metals and correlation to reactivity in multivariate metal-organic frameworks.J Am Chem Soc2016;138:13822-5

[50]

Sun D,Wong HY.Direct visualization of atomic structure in multivariate metal-organic frameworks (MOFs) for guiding electrocatalysts design.Angew Chem Int Ed Engl2023;62:e202216008

[51]

Ji Z,Yaghi OM.Sequencing of metals in multivariate metal-organic frameworks.Science2020;369:674-80

[52]

Fang Z,Kauer M.Structural complexity in metal-organic frameworks: simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers.J Am Chem Soc2014;136:9627-36

[53]

Ma Y,Dreyer SL.High-entropy metal-organic frameworks for highly reversible sodium storage.Adv Mater2021;33:e2101342

[54]

Li Z,Light ME.A metal-organic framework incorporating eight different size rare-earth metal elements: toward multifunctionality À La Carte.Adv Funct Mater2023;33:2307369

[55]

Sun Y,Yu L.Asymmetric acidic/alkaline N2 electrofixation accelerated by high-entropy metal–organic framework derivatives.Carbon Energy2023;5:e263

[56]

Peng Y,Huang H.Customization of functional MOFs by a modular design strategy for target applications.Chem Synth2022;2:15

[57]

Yaghi OM,Diercks CS.Chapter 4: Binary metal-organic frameworks. In: Introduction to reticular chemistry: metal-organic frameworks and covalent organic frameworks. Wiley; 2019. pp. 83-119.

[58]

Yang J,Liu Q.Principles of designing extra-large pore openings and cages in zeolitic imidazolate frameworks.J Am Chem Soc2017;139:6448-55

[59]

Zhang H,Zhang J.Recent applications of multifunctional boron imidazolate framework materials.Acc Mater Res2023;4:995-1007

[60]

Zhang HX,Yang H,Zhang J.Interrupted zeolite LTA and ATN-type boron imidazolate frameworks.J Am Chem Soc2011;133:11884-7

[61]

Li YF,Li QH.Integrated anionic zirconium-organic cage and cationic boron-imidazolate cage for synergetic optical limiting.Angew Chem Int Ed Engl2024;63:e202318806

[62]

Lee MJ,Jeong HK.High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange.Angew Chem Int Ed Engl2018;57:156-61

[63]

Nguyen QT,Cho KY,Baek K.Amine-functionalized bimetallic Co/Zn-zeolitic imidazolate frameworks as an efficient catalyst for the CO2 cycloaddition to epoxides under mild conditions.J CO2 Util2022;61:102061

[64]

Liu Y,Ren Y.Linker-exchanged zeolitic imidazolate framework membranes for efficient CO2 separation.J Membr Sci2024;697:122568

[65]

Guo Y,Zhang D,Li GL.pH-responsive self-healing anticorrosion coatings based on benzotriazole-containing zeolitic imidazole framework.Colloid Surface A2019;561:1-8

[66]

Wang Z,Song H.Ultra-fine potassium hexacyanoferrate(II) nanoparticles modified ZIF-67 for adsorptive removal of radioactive strontium from nuclear wastewater.Sep Purif Technol2024;331:125587

[67]

Gándara F,Britt DK.Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method.Chem Eur J2012;18:10595-601

[68]

Xiong S,Wang H.A new tetrazolate zeolite-like framework for highly selective CO2/CH4 and CO2/N2 separation.Chem Commun2014;50:12101-4

[69]

Li M,Gao R,Wang F.Design and synthesis of zeolitic tetrazolate-imidazolate frameworks.Mater Today Adv2021;10:100145

[70]

Li YM,Ren H.Fine-tuning the micro-environment to optimize the catalytic activity of enzymes immobilized in multivariate metal-organic frameworks.J Am Chem Soc2021;143:15378-90

[71]

Zhang W,Li J.Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages.Angew Chem Int Ed Engl2018;57:2592-5

[72]

Liu J,Zhang J.Synthesis of homochiral zeolitic tetrazolate frameworks based on enantiopure porphyrin-like subunits.Cryst Growth Des2017;17:5393-7

[73]

Zheng Z,Nguyen HL.Structural chemistry of zeolitic imidazolate frameworks.Inorg Chem2023;62:20861-73

[74]

Liu Y,Wang Y.Design and synthesis of a zeolitic organic framework.Angew Chem Int Ed Engl2022;61:e202203584

[75]

Park KS,Côté AP.Exceptional chemical and thermal stability of zeolitic imidazolate frameworks.Proc Natl Acad Sci U S A2006;103:10186-91 PMCID:PMC1502432

[76]

Huang XC,Zhang JP.Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies.Angew Chem Int Ed Engl2006;45:1557-9

[77]

Wang F,Kang Y.A new approach towards zeolitic tetrazolate-imidazolate frameworks (ZTIFs) with uncoordinated N-heteroatom sites for high CO2 uptake.Chem Commun2014;50:12065-8

[78]

Li K,Seidel J.Zeolitic imidazolate frameworks for kinetic separation of propane and propene.J Am Chem Soc2009;131:10368-9

[79]

Banerjee R,Wang B.High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture.Science2008;319:939-43

[80]

Kim MB,Ra Shin SH,Motkuri RK.Enhanced iodine capture using a postsynthetically modified thione-silver zeolitic imidazole framework.ACS Appl Mater Interfaces2023;15:54702-10

[81]

Mondal SS,Dey S.Synthesis of a partially fluorinated ZIF-8 analog for ethane/ethene separation.CrystEngComm2017;19:5882-91

[82]

Zhao Y,Xu XR.Removal of phosphate by adsorption with 2-phenylimidazole-modified porous ZIF-8: powder and chitosan spheres.ACS Omega2023;8:28436-47 PMCID:PMC10413465

[83]

Ding R,Zhou J.Highly water-stable and efficient hydrogen-producing heterostructure synthesized from Mn0.5Cd0.5S and a zeolitic imidazolate framework ZIF-8 via ligand and cation exchange.ACS Appl Mater Interfaces2023;15:36477-88

[84]

Morris W,Furukawa H.A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks.J Am Chem Soc2010;132:11006-8

[85]

Morris W,Furukawa H,Yaghi OM.Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks.J Am Chem Soc2008;130:12626-7

[86]

Banerjee R,Britt D,O’Keeffe M.Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties.J Am Chem Soc2009;131:3875-7

[87]

Li M,Zhang J.Zeolitic tetrazolate-imidazolate frameworks with high chemical stability for selective separation of small hydrocarbons.Cryst Growth Des2016;16:3063-6

[88]

Xiang L,Wang C,Pan Y.Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation.Adv Mater2017;29:1606999

[89]

Tsai C,Langner EH.Enhanced CO2 adsorption in nano-ZIF-8 modified by solvent assisted ligand exchange.Micropor Mesopor Mat2018;262:98-105

[90]

Noh K,Kim J.Metal imidazolate sulphate frameworks as a variation of zeolitic imidazolate frameworks.Chem Commun2022;58:2983-6

[91]

Alibakhshi S,Sheshmani S,Souzangarzadeh S.Design, synthesis, and characterization of a novel Zn(II)-2-phenyl benzimidazole framework for the removal of organic dyes.Sci Rep2022;12:12431 PMCID:PMC9300708

[92]

Lalonde MB,Deria P.Selective solvent-assisted linker exchange (SALE) in a series of zeolitic imidazolate frameworks.Inorg Chem2015;54:7142-4

[93]

Park H,Parise JB.Hydrothermal synthesis and structural characterization of novel Zn−triazole−benzenedicarboxylate frameworks.Chem Mater2006;18:525-31

[94]

Zhang JP,Lin RB,Chen XM.Pore surface tailored SOD-type metal-organic zeolites.Adv Mater2011;23:1268-71

[95]

Lin RB,Lin YY,Chen XM.A zeolite-like zinc triazolate framework with high gas adsorption and separation performance.Inorg Chem2012;51:9950-5

[96]

Zhang XW,Mo ZW,Zhang WX.Quasi-open Cu(I) sites for efficient CO separation with high O2/H2O tolerance.Nat Mater2024;23:116-23

[97]

Liao PQ,Zhang JP.Efficient purification of ethene by an ethane-trapping metal-organic framework.Nat Commun2015;6:8697 PMCID:PMC4846320

[98]

Li HZ,Sun Y,Zhang J.Adjustment of the performance and stability of isostructural zeolitic tetrazolate-imidazolate frameworks.Dalton Trans2020;49:4690-3

[99]

Panda T,Chen Y,Banerjee R.Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide.Chem Commun2011;47:2011-3

[100]

Li M,Wang F.Synthesis of zeolitic tetrazolate-imidazolate frameworks (ZTIFs) in ethylene glycol.Inorg Chem Front2018;5:675-8

[101]

Wang K,Wang Y,Li J.Synthesis of metal organic frameworks based on multiazole ligands for adsorption and separation of acetylene.Chin Sci Bull2023;69:2278-87

[102]

Jiang JQ,Yan XP.Postsynthetic ligand exchange for the synthesis of benzotriazole-containing zeolitic imidazolate framework.Chem Commun2015;51:6540-3

[103]

Erkartal M,Sen U.Synthesis of benzotriazole functionalized ZIF-8 by postsynthetic modification for enhanced CH4 and CO2 uptakes.Inorg Chem Commun2022;142:109696

[104]

Hayashi H,Furukawa H,Yaghi OM.Zeolite A imidazolate frameworks.Nat Mater2007;6:501-6

[105]

Wang B,Furukawa H,Yaghi OM.Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs.Nature2008;453:207-11

[106]

Thompson JA,Brunelli NA.Hybrid zeolitic imidazolate frameworks: controlling framework porosity and functionality by mixed-linker synthesis.Chem Mater2012;24:1930-6

[107]

Hou Q,Zhou S,Caro J.Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation.Angew Chem Int Ed Engl2019;58:327-31

[108]

Wang H,Kalmutzki MJ,Yaghi OM.Large cages of zeolitic imidazolate frameworks.Acc Chem Res2022;55:707-21

[109]

Liu Q,Ma Y.Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity.J Am Chem Soc2019;141:488-96

[110]

Åhlén M,Strømme M.Selective adsorption of CO2 and SF6 on mixed-linker ZIF-7–8s: the effect of linker substitution on uptake capacity and kinetics.Chem Eng J2021;422:130117

[111]

Hillman F.Linker-doped zeolitic imidazolate frameworks (ZIFs) and their ultrathin membranes for tunable gas separations.ACS Appl Mater Interfaces2019;11:18377-85

[112]

Abraha YW,Niemantsverdriet JWH.Optimized CO2 capture of the zeolitic imidazolate framework ZIF-8 modified by solvent-assisted ligand exchange.ACS Omega2021;6:21850-60 PMCID:PMC8515813

[113]

Nam KJ,Yu S.In situ synthesis of multivariate zeolitic imidazolate frameworks for C2H4/C2H6 kinetic separation.Small Methods2022;6:e2200772

[114]

Liu X,Ban Y.Improvement of hydrothermal stability of zeolitic imidazolate frameworks.Chem Commun2013;49:9140-2

[115]

Zhang H,Zhao M.Improving hydrostability of ZIF-8 membranes via surface ligand exchange.J Membr Sci2017;532:1-8

[116]

Yin H,Lai T.Effect of ZIF-71 ligand-exchange surface modification on biofuel recovery through pervaporation.Polymer2020;195:122379

[117]

Xiong Y,Wu X,Liu S.De novo synthesis of amino-functionalized ZIF-8 nanoparticles: Enhanced interfacial compatibility and pervaporation performance in mixed matrix membranes applying for ethanol dehydration.Sep Purif Technol2022;285:120321

[118]

Wang T,Zhang L.Comparison of modulation strategies for enhancing the photocatalytic water splitting performance of metal-organic frameworks.J Phys Chem Solids2023;175:111223

[119]

Li Y,Liu L.Superlubricity modulation by molecular structure of two-dimensional zeolite imidazole frameworks.Mater Today Nano2023;24:100414

[120]

Qiao A,Tao H.A metal-organic framework with ultrahigh glass-forming ability.Sci Adv2018;4:eaao6827 PMCID:PMC5844704

[121]

Frentzel-Beyme L,Kolodzeiski P,Henke S.Meltable mixed-linker zeolitic imidazolate frameworks and their microporous glasses: from melting point engineering to selective hydrocarbon sorption.J Am Chem Soc2019;141:12362-71

[122]

Bumstead AM,Sapnik AF,Lampronti GI.Investigating the chemical sensitivity of melting in zeolitic imidazolate frameworks.Dalton Trans2022;51:13636-45

[123]

Tan YX,Zhang J.Design and synthesis of multifunctional metal-organic zeolites.Chem Soc Rev2018;47:2130-44

[124]

Williams K,Lee S,Gao W.Imparting Brønsted acidity into a zeolitic imidazole framework.Inorg Chem Front2016;3:393-6

[125]

Gao H,Dong L.Enhanced framework rigidity of a zeolitic metal-azolate via ligand substitution.Crystals2017;7:99

[126]

Zhang JP.Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework.J Am Chem Soc2008;130:6010-7

[127]

Bhadra BN,Khan NA.Hydrophobic cobalt-ethylimidazolate frameworks: phase-pure syntheses and possible application in cleaning of contaminated water.Inorg Chem2016;55:11362-71

[128]

Deacon A,Malankowska M.Understanding the ZIF-L to ZIF-8 transformation from fundamentals to fully costed kilogram-scale production.Commun Chem2022;5:18 PMCID:PMC9814364

[129]

Zhou Y,Yang W.Reversibly phase-transformative zeolitic imidazolate framework-108 and the membrane separation utility.Inorg Chem2022;61:17342-52

[130]

Lee Y,Hwang SS.Dual-functionalized ZIF-8 as an efficient acid-base bifunctional catalyst for the one-pot tandem reaction.Catal Today2021;359:124-32

[131]

Zhou Y,Men J,Liang C.Adsorption performance of sulfonamide-modified metal–organic frameworks (MOFs) for Co(II) in aqueous solution.J Radioanal Nucl Chem2022;331:3965-77

[132]

Wang X,Men J,Jia M.Removal of Co(II) from aqueous solutions with amino acid-modified hydrophilic metal-organic frameworks.Inorg Chim Acta2023;547:121337

[133]

Weng P,Yuan M.Development of a ZIF-91-porous-liquid-based composite hydrogel dressing system for diabetic wound healing.Small2023;19:e2301012

[134]

Huang A.Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity.Angew Chem Int Ed Engl2011;50:4979-82

[135]

Feng L,Lv XL.Imprinted apportionment of functional groups in multivariate metal-organic frameworks.J Am Chem Soc2019;141:14524-9

[136]

Yu D,Song Q.A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures.Nat Commun2020;11:927 PMCID:PMC7026438

[137]

Ebrahimi Z,Safarifard V.Solvent-assisted ligand exchange as a post-synthetic surface modification approach of Zn-based (ZIF-7, ZIF-8) and Co-based (ZIF-9, ZIF-67) zeolitic frameworks for energy storage application.J Mol Liq2022;364:120018

[138]

Karagiaridi O,Bury W,Farha OK.Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers.J Am Chem Soc2012;134:18790-6

[139]

Tu M,Fischer RA.Inter-conversion between zeolitic imidazolate frameworks: a dissolution–recrystallization process.J Mater Chem A2020;8:13710-7

[140]

Martínez-Izquierdo L,Coronas J.Highly stable Pebax® Renew® thin-film nanocomposite membranes with metal organic framework ZIF-94 and ionic liquid [Bmim][BF4] for CO2 capture.J Mater Chem A2022;10:18822-33

[141]

Sánchez-Laínez J,Zornoza B.Tuning the separation properties of zeolitic imidazolate framework core–shell structures via post-synthetic modification.J Mater Chem A2017;5:25601-8

[142]

Erkartal M,Tam B.From 2-methylimidazole to 1,2,3-triazole: a topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification.Chem Commun2017;53:2028-31

[143]

Sadakiyo M,Kato K.Introduction of an amino group on zeolitic imidazolate framework through a ligand-exchange reaction.Chem Lett2017;46:1004-6

[144]

Niu X,Yan S.Chiral MOFs encapsulated by polymers with poly-metallic coordination as chiral biosensors.Mikrochim Acta2023;190:230

[145]

Ban Y,Zhang Y.Dual-ligand zeolitic imidazolate framework crystals and oriented films derived from metastable mono-ligand ZIF-108.Micropor Mesopor Mat2016;219:190-8

[146]

Marreiros J,Fleury G.Vapor-phase linker exchange of the metal-organic framework ZIF-8: a solvent-free approach to post-synthetic modification.Angew Chem Int Ed Engl2019;58:18471-5

[147]

Jiang Z,Huang H,Sun Y.Mechanochemistry-assisted linker exchange of metal-organic framework for efficient kinetic separation of propene and propane.Chem Eng J2023;454:140093

[148]

Löffler T,Rossmeisl J.What makes high-entropy alloys exceptional electrocatalysts?.Angew Chem Int Ed Engl2021;60:26894-903 PMCID:PMC9292432

[149]

Pan Q,Feng R.Gradient cell-structured high-entropy alloy with exceptional strength and ductility.Science2021;374:984-9

[150]

Ren J,Zhao D.Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing.Nature2022;608:62-8

[151]

Fu W,Huang Y,Sun J.A new strategy to overcome the strength-ductility trade off of high entropy alloy.Scripta Mater2022;214:114678

[152]

Sun W,Wang Y.Multi-metal–organic frameworks and their derived materials for Li/Na-ion batteries.Electrochem Energ Rev2020;3:127-54

[153]

Zhou K,Luo Z,Chaemchuen S.Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67.J Mater Chem A2017;5:952-7

[154]

Xu W,Jie K,Li T.Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation.Angew Chem Int Ed Engl2019;58:5018-22

[155]

Hou Q,Wei Y,Wang H.Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation.J Am Chem Soc2020;142:9582-6

[156]

Sapnik AF,Reynolds EM,Goodwin AL.Compositional inhomogeneity and tuneable thermal expansion in mixed-metal ZIF-8 analogues.Chem Commun2018;54:9651-4

[157]

Ghadiri M,Pazani F.Tailoring filler/gas vs. filler/polymer interactions via optimizing Co/Zn ratio in bimetallic ZIFs and decorating on GO nanosheets for enhanced CO2 separation.Sep Purif Technol2024;330:125315

[158]

Zhou C,Dong C.The continuous efficient conversion and directional deposition of lithium (poly)sulfides enabled by bimetallic site regulation.Nano Energy2022;98:107332

[159]

Leonel GJ,Marrett JM,Navrotsky A.Crystallographic and compositional dependence of thermodynamic stability of [Co(II), Cu(II), and Zn(II)] in 2-methylimidazole-containing zeolitic imidazolate frameworks.Chem Mater2023;35:7189-95 PMCID:PMC10501375

[160]

Cairns AB.Structural disorder in molecular framework materials.Chem Soc Rev2013;42:4881-93

[161]

Buckingham MA,Lewis DJ.Synthetic strategies toward high entropy materials: atoms-to-lattices for maximum disorder.Cryst Growth Des2023;23:6998-7009 PMCID:PMC10557048

[162]

Krokidas P,Brothers EN,Economou IG.Tailoring the gas separation efficiency of metal organic framework ZIF-8 through metal substitution: a computational study.Phys Chem Chem Phys2018;20:4879-92

[163]

Pambudi FI.Theoretical investigation on the structure of mixed-metal zeolitic imidazolate framework and its interaction with CO2.Comp Mater Sci2022;210:111033

[164]

Khudhair EM,Ammar SH.Bimetallic (Fe/Zn-ZIF-8) crystals: fabrication and adsorptive removal activity. Mater. Today. Proc. 2023.

[165]

Geng R,Ma Q,Feng W.Bimetallic Ag/Zn-ZIF-8: an efficient and sensitive probe for Fe3+ and Cu2+ detection.Colloid Surface A2022;632:127755

[166]

Aniruddha R,Sreedhar I.Bimetallic ZIFs based on Ce/Zn and Ce/Co combinations for stable and enhanced carbon capture.J Clean Prod2022;350:131478

[167]

Zhang D,Xue Z,Xu J.Effect of open metal sites in cobalt-based bimetallic metal–organic framework nanoparticles-coated quartz crystal microbalance (QCM) for humidity detection.ACS Appl Nano Mater2022;5:2147-55

[168]

Duan S,Wu L.U(VI) immobilization properties on porous dual metallic M/Co(II) zeolitic imidazolate framework (ZIF-67) (M = Fe(III), Ni(II), Cu(II)) nanoparticles. Sep. Purif. Technol. 2022, 300, 121931.

[169]

Leonel GJ,Navrotsky A.Systematic investigation of CO2 adsorption energetics in metal–organic frameworks based on imidazolyl linkers.J Phys Chem C2023;127:19973-8

[170]

Pattengale B,Yang S.Direct observation of node-to-node communication in zeolitic imidazolate frameworks.J Am Chem Soc2018;140:11573-6

[171]

Baghban A,Zokaee Ashtiani F.Bandgaps of noble and transition metal/ZIF-8 electro/catalysts: a computational study.RSC Adv2020;10:22929-38 PMCID:PMC9054687

[172]

Cheng N,Xu X,Dou SX.Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts.Adv Energy Mater2018;8:1801257

[173]

Jadhav HS,Ramakrishna S.Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting.Adv Mater2022;34:e2107072

[174]

Shahzad A,Arif Nadeem M.Cobalt containing bimetallic ZIFs and their derivatives as OER electrocatalysts: a critical review.Coord Chem Rev2023;477:214925

[175]

Wang S,Wu A.Recent advances in tailoring zeolitic imidazolate frameworks (ZIFs) and their derived materials based on hard template strategy for multifunctional applications.Coord Chem Rev2024;498:215464

[176]

Fan Y,Wang Y.Tuning the synthesis of polymetallic-doped ZIF derived materials for efficient hydrogenation of furfural to furfuryl alcohol.Nanoscale2020;12:18296-304

[177]

Sankar SS,Keerthana G,Kundu S.Highly stable trimetallic (Co, Ni, and Fe) zeolite imidazolate framework microfibers: an excellent electrocatalyst for water oxidation.Cryst Growth Des2021;21:1800-9

[178]

Thenrajan T,Kundu S.Novel electrochemical sensing of catechins in raw green tea extract via a trimetallic zeolitic imidazolate fibrous framework.ACS Omega2022;7:19754-63 PMCID:PMC9202283

[179]

Dong Q,Cheng S.Programmable heating and quenching for efficient thermochemical synthesis.Nature2022;605:470-6

[180]

Jiang H,Wang C.Nanoscale laser metallurgy and patterning in air using MOFs.J Am Chem Soc2019;141:5481-9

[181]

Yao Y,Xie P.Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts.Sci Adv2020;6:eaaz0510 PMCID:PMC7069714

[182]

Brozek CK.Cation exchange at the secondary building units of metal-organic frameworks.Chem Soc Rev2014;43:5456-67

[183]

Shao W,Xie F,Wang HT.Facile construction of a ZIF-67/AgCl/Ag heterojunction via chemical etching and surface ion exchange strategy for enhanced visible light driven photocatalysis.RSC Adv2020;10:38174-83 PMCID:PMC9057195

[184]

Yang K,Feng Y.Tunable regulation of metal-semiconductor heterostructures toward Ag/ZnO hybrids for electromagnetic wave absorption.J Alloys Compd2022;926:166899

[185]

Chen Y,Qiu B.Enhanced catalytic performance of a membrane microreactor by immobilizing ZIF-8-derived nano-Ag via ion exchange.Ind Eng Chem Res2020;59:19553-63

[186]

Chen XL,Jiang Y.Active sites in situ implanted hybrid zeolitic imidazolate frameworks for a water oxidation catalyst.Inorg Chem2022;61:15801-5

[187]

Mphuthi LE,Langner EHG.Ti(IV)-exchanged nano-ZIF-8 and nano-ZIF-67 for enhanced photocatalytic oxidation of hydroquinone.J Inorg Organomet Polym2022;32:2664-78

[188]

Mphuthi LE,Langner EHG.Metal exchange of ZIF-8 and ZIF-67 nanoparticles with Fe(II) for enhanced photocatalytic performance.ACS Omega2021;6:31632-45 PMCID:PMC8637596

[189]

Wan J,Zhou SJ.A bimetallic (Ni/Co) metal-organic framework with excellent oxidase-like activity for colorimetric sensing of ascorbic acid.Anal Methods2023;15:1819-25

[190]

Qiu B,Chen J.Catalytic membrane micro-reactor with nano Cu/ZIF-8 assembly in membrane pores by flowing synthesis combining partial ion-exchange.J Membr Sci2022;644:120183

[191]

Fei H,Prather KA.Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks.Inorg Chem2013;52:4011-6

[192]

Moscoso F,Ruiz-Salvador A,Pedrosa J.Enhancement of the intrinsic fluorescence of ZIF-8 via post-synthetic cation exchange with Cd2+ and its incorporation into PDMS films for selective sulfide optical sensing.Mater Today Chem2023;28:101366

[193]

Geng W,Li G.Induced CO2 electroreduction to formic acid on metal-organic frameworks via node doping.ChemSusChem2020;13:4035-40

[194]

Song F,Zhao Y.Ion-exchanged ZIF-67 synthesized by one-step method for enhancement of CO2 adsorption.J Nanomater2020;2020:1-11

[195]

Li Z,Sharma G,Merz KM Jr.Accurate metal-imidazole interactions.J Chem Theory Comput2023;19:619-25

[196]

Wang F,Yang H,Zhang J.Hybrid zeolitic imidazolate frameworks with catalytically active TO4 building blocks.Angew Chem Int Ed Engl2011;50:450-3

[197]

Xu YT,Ye JW.Non-3d metal modulation of a cobalt imidazolate framework for excellent electrocatalytic oxygen evolution in neutral media.Angew Chem Int Ed Engl2019;58:139-43

[198]

Li Y,Zhang H.HZIF-based hybrids for electrochemical energy applications.Nanoscale2019;11:15763-9

[199]

Dey C.Controlled synthesis of a catalytically active hybrid metal-oxide incorporated zeolitic imidazolate framework (MOZIF).Chem Commun2013;49:6617-9

[200]

Wang Y,Zhang J.Fast synthesis of hybrid zeolitic imidazolate frameworks (HZIFs) with exceptional acid–base stability from ZIF-8 precursors.Cryst Growth Des2019;19:3430-4

[201]

Li X,Han X.Single atom Pd1/ZIF-8 catalyst via partial ligand exchange.Nano Res2023;16:8003-11

[202]

Simonov A.Designing disorder into crystalline materials.Nat Rev Chem2020;4:657-73

[203]

Boström HLB.Hybrid perovskites, metal-organic frameworks, and beyond: unconventional degrees of freedom in molecular frameworks.Acc Chem Res2021;54:1288-97 PMCID:PMC7931445

[204]

Meekel EG,Cameron LJ.Truchet-tile structure of a topologically aperiodic metal-organic framework.Science2023;379:357-61

[205]

Yaghi OM.Decoding complex order in reticular frameworks.Science2023;379:330-1

[206]

Desai AV,Laybourn A.Green synthesis of reticular materials. Adv, Funct, Mater, 2023.

[207]

Wang J,Klomkliang N.In situ thermal solvent-free synthesis of zeolitic imidazolate frameworks with high crystallinity and porosity for effective adsorption and catalytic applications.Cryst Growth Des2021;21:5349-59

[208]

Shi G,Wang J,Mousavi B.Thermochemical transformation in the single-step synthesis of zeolitic imidazole frameworks under solvent-free conditions.Dalton Trans2020;49:2811-8

[209]

Zheng Z,Rampal N,Chayes JT.A GPT-4 reticular chemist for guiding MOF discovery.Angew Chem Int Ed Engl2023;62:e202311983

[210]

Zheng Z,Nguyen HL.ChatGPT research group for optimizing the crystallinity of MOFs and COFs.ACS Cent Sci2023;9:2161-70 PMCID:PMC10683477

[211]

Zheng Z,Borgs C,Yaghi OM.ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis.J Am Chem Soc2023;145:18048-62 PMCID:PMC11073615

[212]

León-Alcaide L,Esteve-Rochina M.Implementing mesoporosity in zeolitic imidazolate frameworks through clip-off chemistry in heterometallic iron-zinc ZIF-8.J Am Chem Soc2023;145:23249-56 PMCID:PMC10603776

[213]

Huang Y,Cui T,Ren J.A bimetallic nanoplatform for STING activation and CRISPR/Cas mediated depletion of the methionine transporter in cancer cells restores anti-tumor immune responses.Nat Commun2023;14:4647 PMCID:PMC10397352

[214]

Huang C,Gu X,Zhu H.Bimetallic oxide nanoparticles confined in ZIF-67-derived carbon for highly selective oxidation of saturated C–H bond in alkyl arenes.Appl Organomet Chem2021;35:e6047

[215]

Li R,Lu J.Metal-organic frameworks doped with metal ions for efficient sterilization: Enhanced photocatalytic activity and photothermal effect.Water Res2023;229:119366

[216]

Zhang J,Zhou C,Feng P.Zeolitic boron imidazolate frameworks.Angew Chem Int Ed Engl2009;48:2542-5 PMCID:PMC2790048

[217]

Yi B,Zhang Y.A direct solvent-free conversion approach to prepare mixed-metal metal-organic frameworks from doped metal oxides.Chem Commun2021;57:3587-90

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/