Chemical bonding strategy on boosting superior Li+ diffusion kinetics towards long-stable lithium metal anode

Farwa Mushtaq , Haifeng Tu , Yuting Zheng , Yongyi Zhang , Zhiqiang Wang , Minjie Hou , Meinan Liu , Kunfeng Chen , Feng Liang , Jun Liu , Fei Liu , Bingsuo Zou , Dongfeng Xue

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) : 27

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) :27 DOI: 10.20517/cs.2024.66
review-article

Chemical bonding strategy on boosting superior Li+ diffusion kinetics towards long-stable lithium metal anode

Author information +
History +
PDF

Abstract

With the fast development of electronics, electric vehicles and electric airplanes, lithium metal batteries (LMBs) with a high energy density attract increased attention for their long-voyage-capability. However, the dendrites from uneven Li plating may cause serious safety issues, especially under low-temperature conditions, thus limiting the practical application of LMB. Tremendous efforts to develop various Li hosts based on thermodynamics, trying to provide lithophilic sites for homogeneous deposition, did not yet push the cycle life of Li anodes long enough to compete with current graphene anodes, especially under harsh conditions, such as subzero temperatures. The focus of this review is on the recent progress in chemical bonding strategies for boosting lithium ions/atoms (Li+/Li) transport via liquid, interphase, and solid phases through rational design of electrolytes, interphases, and Li hosts. Research results on understanding the working mechanism of chemical interaction between Li+/Li and other molecules in bulk electrolytes, interphases, or electrodes during charge/discharge are discussed. These understandings may provide new perspectives on designing advanced LMB systems.

Keywords

Li+/Li transport kinetics / diffusion kinetics / solvation structure / desolvation / nucleation kinetics / deposition kinetics

Cite this article

Download citation ▾
Farwa Mushtaq, Haifeng Tu, Yuting Zheng, Yongyi Zhang, Zhiqiang Wang, Minjie Hou, Meinan Liu, Kunfeng Chen, Feng Liang, Jun Liu, Fei Liu, Bingsuo Zou, Dongfeng Xue. Chemical bonding strategy on boosting superior Li+ diffusion kinetics towards long-stable lithium metal anode. Chemical Synthesis, 2025, 5(2): 27 DOI:10.20517/cs.2024.66

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gupta A.Designing advanced lithium-based batteries for low-temperature conditions.Adv Energy Mater2020;10:2001972 PMCID:PMC8216142

[2]

Li L,Wang J.Asymmetric gel polymer electrolyte with high lithium ion conductivity for dendrite-free lithium metal batteries.J Mater Chem A2020;8:8033-40

[3]

Hu A,Chen W.Ion transport kinetics in low-temperature lithium metal batteries.Adv Energy Mater2022;12:2202432

[4]

Hao Z,Zhao Q.Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes.Adv Funct Mater2021;31:2102938

[5]

Tu H,Wang Z.Tailoring electrolyte solvation for LiF-rich solid electrolyte interphase toward a stable Li anode.ACS Nano2022;16:16898-908

[6]

Hwang G,Moon J,Hwang S.Model predictive control of lithium-ion batteries: development of optimal charging profile for reduced intracycle capacity fade using an enhanced single particle model (SPM) with first-principled chemical/mechanical degradation mechanisms.Chem Eng J2022;435:134768

[7]

Sarkar S,El-halwagi MM.Electrochemical models: methods and applications for safer lithium-ion battery operation.J Electrochem Soc2022;169:100501

[8]

Pang H,Liu J,Liu K.Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions.J Energy Chem2023;78:1-12

[9]

Cao T,Sun Y.Fluorine-rich interphase and desolvation regulation for a long-life and high-rate TiS2-based Li-metal battery.J Phys Chem C2022;126:5122-30

[10]

Wang Z,Yin L.An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes.Adv Energy Mater2020;10:1903843

[11]

Wang Y,Sun A.Dual Li+ transport enabled by BN-assisted solid-polymer-electrolyte for high-performance lithium batteries.Chem Eng J2023;475:146414

[12]

Wang L,Liu Q.Bifunctional lithium-montmorillonite enabling solid electrolyte with superhigh ionic conductivity for high-performanced lithium metal batteries.Energy Storage Mater2023;63:102961

[13]

Zhang J,Zhuang Q.Tuning 4f-center electron structure by Schottky defects for catalyzing Li diffusion to achieve long-term dendrite-free lithium metal battery.Adv Sci2022;9:e2202244 PMCID:PMC9376855

[14]

Chen J,Sun N.A robust Li-intercalated interlayer with strong electron withdrawing ability enables durable and high-rate Li metal anode.ACS Energy Lett2022;7:1594-603

[15]

Zhang N,Zhang S.Critical review on low-temperature Li-ion/metal batteries.Adv Mater2022;34:e2107899

[16]

Xu J,Pollard TP.Electrolyte design for Li-ion batteries under extreme operating conditions.Nature2023;614:694-700

[17]

Feng Y,Ma H.Challenges and advances in wide-temperature rechargeable lithium batteries.Energy Environ Sci2022;15:1711-59

[18]

Suo L,Gao T.“Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries.Science2015;350:938-43

[19]

Suo L,Li H,Chen L.A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries.Nat Commun2013;4:1481

[20]

Chen S,Mei D.High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes.Adv Mater2018;30:e1706102

[21]

Chu F,Wu F.Unveiling the effect and correlative mechanism of series-dilute electrolytes on lithium metal anodes.Energy Storage Mater2023;56:141-54

[22]

Sun N,Zhao Y.Anionic coordination manipulation of multilayer solvation structure electrolyte for high-rate and low-temperature lithium metal battery.Adv Energy Mater2022;12:2200621

[23]

Ma T,Wang Q.Optimize lithium deposition at low temperature by weakly solvating power solvent.Angew Chem Int Ed Engl2022;61:e202207927

[24]

Tian C,Suo L.Concentrated electrolytes for rechargeable lithium metal batteries.Mater Futures2023;2:012101

[25]

Yu Z,Borodin O.Beyond local solvation structure: nanometric aggregates in battery electrolytes and their effect on electrolyte properties.ACS Energy Lett2022;7:461-70

[26]

Liu W,Li L.Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries.Angew Chem Int Ed Engl2021;60:12931-40

[27]

Hu Y,Tu H.Janus electrolyte with modified Li+ solvation for high-performance solid-state lithium batteries.Adv Funct Mater2022;32:2203336

[28]

Du L,Yang C,Mai L.Leaf-inspired quasi-solid electrolyte enables uniform lithium deposition and suppressed lithium-electrolyte reactions for lithium metal batteries.Energy Storage Mater2023;61:102914

[29]

Zheng G,Hong Y.A non-Newtonian fluid quasi-solid electrolyte designed for long life and high safety Li-O2 batteries.Nat Commun2023;14:2268 PMCID:PMC10119181

[30]

Zeng X,Shi Y.Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries.Chem2018;4:298-307

[31]

Kim MS,Rudnicki PE.Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries.Nat Mater2022;21:445-54

[32]

Kim MS,Wang J.Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries.ACS Nano2023;17:3168-80

[33]

Tu H,Sun A.Superior Li+ kinetics by “Low-Activity-Solvent” engineering for stable lithium metal batteries.Nano Lett2024;24:5714-21

[34]

Huang X,Sun C.Solvent-assisted hopping mechanism enables ultrafast charging of lithium-ion batteries.ACS Energy Lett2022;7:3947-57

[35]

Sun C,Weng S.50C fast-charge Li-ion batteries using a graphite anode.Adv Mater2022;34:e2206020

[36]

Chen Y,Rudnicki P.Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery.J Am Chem Soc2021;143:18703-13

[37]

Park E,Lee K.Exploiting the steric effect and low dielectric constant of 1,2-dimethoxypropane for 4.3 V lithium metal batteries.ACS Energy Lett2023;8:179-88

[38]

Yao YX,Yan C.Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte.Angew Chem Int Ed Engl2021;60:4090-7

[39]

Li Z,Atwi R.Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries.Nat Commun2023;14:868 PMCID:PMC9935899

[40]

Yu Z,Zhang Z.Rational solvent molecule tuning for high-performance lithium metal battery electrolytes.Nat Energy2022;7:94-106

[41]

Wang H,Kong X.Dual-solvent Li-ion solvation enables high-performance Li-metal batteries.Adv Mater2021;33:e2008619

[42]

Tan L,Chen Y.Intrinsic nonflammable ether electrolytes for ultrahigh-voltage lithium metal batteries enabled by chlorine functionality.Angew Chem Int Ed Engl2022;61:e202203693

[43]

Ruan D,Chen S.Solvent versus anion chemistry: unveiling the structure-dependent reactivity in tailoring electrochemical interphases for lithium-metal batteries.JACS Au2023;3:953-63 PMCID:PMC10052229

[44]

Shi J,Lai J.An amphiphilic molecule-regulated core-shell-solvation electrolyte for Li-metal batteries at ultra-low temperature.Angew Chem Int Ed Engl2023;62:e202218151

[45]

Zhao Y,Ashirov T.Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries.Nat Commun2022;13:2575 PMCID:PMC9076822

[46]

Dou Q,Pang WK.Unveiling solvation structure and desolvation dynamics of hybrid electrolytes for ultralong cyclability and facile kinetics of Zn–Al alloy anodes.Energy Environ Sci2022;15:4572-83

[47]

Tanibata N,Nishikawa K,Nakayama M.Asymmetry in the solvation-desolvation resistance for Li metal batteries.Anal Chem2020;92:3499-502

[48]

Feng Y,Zhang R.Achieving high-power and dendrite-free lithium metal anodes via interfacial ion-transport-rectifying pump.Adv Energy Mater2023;13:2203912

[49]

Yao S,Liang Z.A dual−functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries.Adv Funct Maters2023;33:2212466

[50]

Bai S,Yi J,Qiao Y.High-power Li-metal anode enabled by metal-organic framework modified electrolyte.Joule2018;2:2117-32

[51]

Chang Z,Yang H.Beyond the concentrated electrolyte: further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium metal batteries.Energy Environ Sci2020;13:4122-31

[52]

Jiang C,Tang M.Toward stable lithium plating/stripping by successive desolvation and exclusive transport of Li ions.ACS Appl Mater Interfaces2020;12:10461-70

[53]

Li L,Wang J.Electrocatalytic MOF-carbon bridged network accelerates Li+-solvents desolvation for high Li+ diffusion toward rapid sulfur redox kinetics.Adv Funct Mater2023;33:2212499

[54]

Xu Y,Shen L.Ion-transport-rectifying layer enables Li-metal batteries with high energy density.Matter2020;3:1685-700

[55]

Chang Z,Deng H,He P.A liquid electrolyte with de-solvated lithium ions for lithium-metal battery.Joule2020;4:1776-89

[56]

Li C,Amin K.Robust anion-shielding metal-organic frameworks based composite interlayers to achieve uniform Li deposition for stable Li-metal anode.ChemElectroChem2022;9:e202101596

[57]

Yang Y,Liang Z.A self-supporting covalent organic framework separator with desolvation effect for high energy density lithium metal batteries.ACS Energy Lett2022;7:885-96

[58]

Wang X,Liu M.In-plane lithium growth enabled by artificial nitrate-rich layer: fast deposition kinetics and desolvation/adsorption mechanism.Small2020;16:e2000769

[59]

Wang J,Duan S.Construction of moisture-stable lithium diffusion-controlling layer toward high performance dendrite-free lithium anode.Adv Funct Mater2022;32:2110468

[60]

Zhang W,Li S.Engineering wavy-nanostructured anode interphases with fast ion transfer kinetics: toward practical Li-metal full batteries.Adv Funct Mater2020;30:2003800

[61]

Wang J,Wu J.Interfacial “Single-atom-in-defects” catalysts accelerating Li+ desolvation kinetics for long-lifespan lithium-metal batteries.Adv Mater2023;35:e2302828

[62]

Wang J,Cheng S.Long-life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer.Nano Lett2021;21:3245-53

[63]

Wen P,Mao J.Tuning desolvation kinetics of in-situ weakly solvating polyacetal electrolytes for dendrite-free lithium metal batteries.J Energy Chem2023;79:340-7

[64]

Xu K.Interfaces and interphases in batteries.J Power Sources2023;559:232652

[65]

Tu H,Hu Y.Non-flammable liquid polymer-in-salt electrolyte enabling secure and dendrite-free lithium metal battery.Chem Eng J2022;434:134647

[66]

Fong R,Dahn JR.Studies of lithium intercalation into carbons using nonaqueous electrochemical cells.J Electrochem Soc1990;137:2009-13

[67]

Wang L,Han F.Identifying the components of the solid-electrolyte interphase in Li-ion batteries.Nat Chem2019;11:789-96

[68]

Hu Z,Dong S,Cui G.Self-stabilized solid electrolyte interface on a host-free Li-metal anode toward high areal capacity and rate utilization.Chem Mater2018;30:4039-47

[69]

Wang Z,Sun Y.Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries.Adv Energy Mater2021;11:2003752

[70]

Xie J,Chen X.Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries.Angew Chem Int Ed Engl2022;61:e202204776

[71]

Zhu C,Li R.Anion–diluent pairing for stable high-energy Li metal batteries.ACS Energy Lett2022;7:1338-47

[72]

Sun A,Sun Z.Dual-halide interphase enabling high-performance lithium metal batteries in wide-temperature range.ACS Energy Lett2024;9:2545-53

[73]

Zhang S,Hu N.Tackling realistic Li+ flux for high-energy lithium metal batteries.Nat Commun2022;13:5431 PMCID:PMC9481556

[74]

Liu S,Piao N.An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes.Angew Chem Int Ed Engl2021;60:3661-71

[75]

Zhang W,Huang J.Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries.Adv Mater2020;32:e2001740

[76]

Yan C,Chen X.Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes.J Am Chem Soc2019;141:9422-9

[77]

Wang Q,Zhao C.Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries.Nat Commun2020;11:4188 PMCID:PMC7442789

[78]

Wu D,Liu J.Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+-transferred characteristics via adjusting electrolyte additives.Adv Energy Mater2022;12:2200337

[79]

Mao M,Wang Q.Anion-enrichment interface enables high-voltage anode-free lithium metal batteries.Nat Commun2023;14:1082 PMCID:PMC9968319

[80]

Zeng H,Li J.Beyond LiF: tailoring Li2O-dominated solid electrolyte interphase for stable lithium metal batteries.ACS Nano2024;18:1969-81

[81]

Wang J,Xiao Q.In situ self-assembly of ordered organic/inorganic dual-layered interphase for achieving long-life dendrite-free Li metal anodes in LiFSI-based electrolyte.Adv Funct Mater2021;31:2007434

[82]

Wang Z,Xu J.Advanced ultralow-concentration electrolyte for wide-temperature and high-voltage Li-metal batteries.Adv Funct Mater2022;32:2112598

[83]

Yan C,Tian Y.Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition.Adv Mater2018;30:e1707629

[84]

Li Z,Weng S,Wang X.Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries.Nat Commun2023;14:482 PMCID:PMC9886912

[85]

Lin H,Wang Y,Tie Z.Template-sacrificed hot fusion construction and nanoseed modification of 3D porous copper nanoscaffold host for stable-cycling lithium metal anodes.Adv Funct Mater2021;31:2102735

[86]

Guan W,Liu Y.Advances in the emerging gradient designs of Li metal hosts.Research2022;2022:9846537 PMCID:PMC9368513

[87]

Bai M,Yuan K.A scalable approach to dendrite-free lithium anodes via spontaneous reduction of spray-coated graphene oxide layers.Adv Mater2018;30:e1801213

[88]

Li Q,Lu Y.3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries.Adv Funct Mater2017;27:1606422

[89]

Wang J,Hu H.Toward dendrite-free metallic lithium anodes: from structural design to optimal electrochemical diffusion kinetics.ACS Nano2022;16:17729-60

[90]

Yi J,Yang Z.Facile Patterning of laser-induced graphene with tailored Li nucleation kinetics for stable lithium-metal batteries.Adv Energy Mater2019;9:1901796

[91]

Shen X,Yu X,Wang M.Multifunctional SnSe–C composite modified 3D scaffolds to regulate lithium nucleation and fast transport for dendrite-free lithium metal anodes.J Mater Chem A2021;9:21695-702

[92]

Wang X,Wu Y.Reducing lithium deposition overpotential with silver nanocrystals anchored on graphene aerogel.Nanoscale2018;10:16562-7

[93]

Gu Y,Wang Y,Shang H.Precise construction of lithiophilic sites by diyne-linked phthalocyanine polymer for suppressing metallic lithium dendrite.Dalton Trans2022;51:5828-33

[94]

Duan H,Chen X.Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries.J Am Chem Soc2018;140:18051-7

[95]

Huang K,Xu Q,Li H.Lithiophilic CuO nanoflowers on Ti-mesh inducing lithium lateral plating enabling stable lithium-metal anodes with ultrahigh rates and ultralong cycle life.Adv Energy Mater2019;9:1900853

[96]

Chen X,Zhao C,Zhang Q.Synergetic coupling of lithiophilic sites and conductive scaffolds for dendrite-free lithium metal anodes.Small Methods2020;4:1900177

[97]

Shen X,Li B.Lithiophilic interphase porous buffer layer toward uniform nucleation in lithium metal anodes.Adv Funct Mater2022;32:2206388

[98]

Gu J,Shi Y.Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes.ACS Nano2020;14:891-8

[99]

Xu K,Wu X.Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode.Energy Storage Mater2019;23:587-93

[100]

Yang Z,Zhai P.Single-atom reversible lithiophilic sites toward stable lithium anodes.Adv Energy Mater2022;12:2103368

[101]

Wang J,Duan S.Lithium atom surface diffusion and delocalized deposition propelled by atomic metal catalyst toward ultrahigh-capacity dendrite-free lithium anode.Nano Lett2022;22:8008-17

[102]

Lee H,Hwang S.Multiscale modeling of dendrite formation in lithium-ion batteries.Comput Chem Eng2021;153:107415

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/