Chemical bonding strategy on boosting superior Li+ diffusion kinetics towards long-stable lithium metal anode
Farwa Mushtaq , Haifeng Tu , Yuting Zheng , Yongyi Zhang , Zhiqiang Wang , Minjie Hou , Meinan Liu , Kunfeng Chen , Feng Liang , Jun Liu , Fei Liu , Bingsuo Zou , Dongfeng Xue
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) : 27
Chemical bonding strategy on boosting superior Li+ diffusion kinetics towards long-stable lithium metal anode
With the fast development of electronics, electric vehicles and electric airplanes, lithium metal batteries (LMBs) with a high energy density attract increased attention for their long-voyage-capability. However, the dendrites from uneven Li plating may cause serious safety issues, especially under low-temperature conditions, thus limiting the practical application of LMB. Tremendous efforts to develop various Li hosts based on thermodynamics, trying to provide lithophilic sites for homogeneous deposition, did not yet push the cycle life of Li anodes long enough to compete with current graphene anodes, especially under harsh conditions, such as subzero temperatures. The focus of this review is on the recent progress in chemical bonding strategies for boosting lithium ions/atoms
Li+/Li transport kinetics / diffusion kinetics / solvation structure / desolvation / nucleation kinetics / deposition kinetics
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
/
| 〈 |
|
〉 |