Enantioselective photochemical reactions within the confined cavities of supramolecular assemblies

Yi-Wen Su , Cheng Pan , Tao-Yue Sun , You-Quan Zou

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (1) : 10

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (1) :10 DOI: 10.20517/cs.2024.64
review-article

Enantioselective photochemical reactions within the confined cavities of supramolecular assemblies

Author information +
History +
PDF

Abstract

Compared to bulk solvents, reactions in the confined spaces of supramolecular self-assemblies feature rate acceleration, high efficiency and substrate selectivity. These advantages lead to efficient catalytic efficiency and excellent selectivity in enantioselective supramolecular photochemical transformations. During the last few years, enantioselective supramolecular photocatalysis has developed into one of the most powerful strategies to construct enantioenriched chiral compounds. In this review, the recent advances of enantioselective photochemical reactions taking place within the confined spaces of supramolecular assemblies are summarized, with an emphasis on the specific catalytic modes and chemical transformations. Organization of the data follows a subdivision according to supramolecular host and reaction type. At last, the current limitations and the future research orientation of this research field are discussed.

Keywords

Supramolecular catalysis / enantioselective photochemistry / photocatalysis / confinement / host-guest interactions

Cite this article

Download citation ▾
Yi-Wen Su, Cheng Pan, Tao-Yue Sun, You-Quan Zou. Enantioselective photochemical reactions within the confined cavities of supramolecular assemblies. Chemical Synthesis, 2025, 5(1): 10 DOI:10.20517/cs.2024.64

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brimioulle R,Maturi MM.Enantioselective catalysis of photochemical reactions.Angew Chem Int Ed Engl2015;54:3872-90

[2]

Yao W,Ngai MY.Asymmetric photocatalysis enabled by chiral organocatalysts.ChemCatChem2022;14:e202101292 PMCID:PMC9531867

[3]

Jiang C,Zheng WH.Advances in asymmetric visible-light photocatalysis, 2015-2019.Org Biomol Chem2019;17:8673-89

[4]

Zarra S,Roberts DA.Molecular containers in complex chemical systems.Chem Soc Rev2015;44:419-32

[5]

Morimoto M,Xia KT,Raymond KN.Advances in supramolecular host-mediated reactivity.Nat Catal2020;3:969-84

[6]

Ramamurthy V.Supramolecular photochemistry: from molecular crystals to water-soluble capsules.Chem Soc Rev2015;44:119-35

[7]

Ramamurthy V.Supramolecular photochemistry as a potential synthetic tool: photocycloaddition.Chem Rev2016;116:9914-93

[8]

Gao W,Jin G.Supramolecular catalysis based on discrete heterometallic coordination-driven metallacycles and metallacages.Coordin Chem Rev2019;386:69-84

[9]

Liu Y,Cui Y.Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation.Adv Mater2010;22:4112-35

[10]

Hao Y,Jiao Z.Photocatalysis meets confinement: an emerging opportunity for photoinduced organic transformations.Angew Chem Int Ed Engl2024;63:e202317808

[11]

Ballester P,Gaeta C.Supramolecular approaches to mediate chemical reactivity.Beilstein J Org Chem2022;18:1463-5 PMCID:PMC9577385

[12]

Ham R,Pullen S.Supramolecular coordination cages for artificial photosynthesis and synthetic photocatalysis.Chem Rev2023;123:5225-61 PMCID:PMC10176487

[13]

Olivo G,Del Giudice D,Di Stefano S.New horizons for catalysis disclosed by supramolecular chemistry.Chem Soc Rev2021;50:7681-724

[14]

Meeuwissen J.Supramolecular catalysis beyond enzyme mimics.Nat Chem2010;2:615-21

[15]

Hong CM,Raymond KN.Self-assembled tetrahedral hosts as supramolecular catalysts.Acc Chem Res2018;51:2447-55

[16]

Jing X,Zhao L.Photochemical properties of host-guest supramolecular systems with structurally confined metal-organic capsules.Acc Chem Res2019;52:100-9

[17]

Pascanu V,Inge AK.Metal-organic frameworks as catalysts for organic synthesis: a critical perspective.J Am Chem Soc2019;141:7223-34

[18]

Zhang Q,Tiefenbacher K.Catalysis inside the hexameric resorcinarene capsule.Acc Chem Res2018;51:2107-14

[19]

Wang MX.Nitrogen and oxygen bridged calixaromatics: synthesis, structure, functionalization, and molecular recognition.Acc Chem Res2012;45:182-95

[20]

Fang Y,Li E.Catalytic reactions within the cavity of coordination cages.Chem Soc Rev2019;48:4707-30

[21]

Qin B,Tang X.Supramolecular polymer chemistry: from structural control to functional assembly.Prog Polym Sci2020;100:101167

[22]

Vallavoju N.Supramolecular photocatalysis: combining confinement and non-covalent interactions to control light initiated reactions.Chem Soc Rev2014;43:4084-101

[23]

Yang C.Supramolecular photochirogenesis.Chem Soc Rev2014;43:4123-43

[24]

Nishijima M,Mori T,Bohne C.Highly enantiomeric supramolecular [4 + 4] photocyclodimerization of 2-anthracenecarboxylate mediated by human serum albumin.J Am Chem Soc2007;129:3478-9

[25]

Wada T,Fujisawa T.Bovine serum albumin-mediated enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate.J Am Chem Soc2003;125:7492-3

[26]

Ishida Y,Kato SY.Two-component liquid crystals as chiral reaction media: highly enantioselective photodimerization of an anthracene derivative driven by the ordered microenvironment.Angew Chem Int Ed Engl2008;47:8241-5

[27]

Ishida Y,Kai Y.Metastable liquid crystal as time-responsive reaction medium: aging-induced dual enantioselective control.J Am Chem Soc2013;135:6407-10

[28]

Ji J,Wu W.Asymmetric photoreactions in supramolecular assemblies.Acc Chem Res2023;56:1896-907

[29]

Wei X,Matsushita R.Supramolecular photochirogenesis driven by higher-order complexation: enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate to slipped cyclodimers via a 2:2 complex with β-cyclodextrin.J Am Chem Soc2018;140:3959-74

[30]

Rekharsky MV.Complexation thermodynamics of cyclodextrins.Chem Rev1998;98:1875-918

[31]

Nakamura A.Supramolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by gamma-cyclodextrin.J Am Chem Soc2003;125:966-72

[32]

Nakamura A.Electrostatic manipulation of enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate within gamma-cyclodextrin cavity through chemical modification. inverted product distribution and enhanced enantioselectivity.J Am Chem Soc2005;127:5338-9

[33]

Yang C,Wada T.Enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by gamma-cyclodextrins with a flexible or rigid cap.Org Lett2006;8:3005-8

[34]

Yang C,Origane Y.Highly stereoselective photocyclodimerization of alpha-cyclodextrin-appended anthracene mediated by gamma-cyclodextrin and cucurbit[8]uril: a dramatic steric effect operating outside the binding site.J Am Chem Soc2008;130:8574-5

[35]

Ke C,Mori T,Liu Y.Catalytic enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by a non-sensitizing chiral metallosupramolecular host.Angew Chem Int Ed Engl2009;48:6675-7

[36]

Luo L,Wu XL,Tung CH.Gamma-cyclodextrin-directed enantioselective photocyclodimerization of methyl 3-methoxyl-2-naphthoate.J Org Chem2009;74:3506-15

[37]

Yang C,Liang W.Dual supramolecular photochirogenesis: ultimate stereocontrol of photocyclodimerization by a chiral scaffold and confining host.J Am Chem Soc2011;133:13786-9

[38]

Yao J,Ji J.Ammonia-driven chirality inversion and enhancement in enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by diguanidino-γ-cyclodextrin.J Am Chem Soc2014;136:6916-9

[39]

Ji J,Liang W.An ultimate stereocontrol in supramolecular photochirogenesis: photocyclodimerization of 2-anthracenecarboxylate mediated by sulfur-linked β-cyclodextrin dimers.J Am Chem Soc2019;141:9225-38

[40]

Kanagaraj K,Rao M.pH-controlled chirality inversion in enantiodifferentiating photocyclodimerization of 2-antharacenecarboxylic acid mediated by γ-cyclodextrin derivatives.Org Lett2020;22:5273-8

[41]

Wei X,Ji J.Reversal of regioselectivity during photodimerization of 2-anthracenecarboxylic acid in a water-soluble organic cavitand.Org Lett2019;21:7868-72

[42]

Rau H.Asymmetric photochemistry in solution.Chem Rev1983;83:535-47

[43]

Inoue Y.Asymmetric photochemical reactions in solution.Chem Rev1992;92:741-70

[44]

Genzink MJ,Swords WB.Chiral photocatalyst structures in asymmetric photochemical synthesis.Chem Rev2022;122:1654-716 PMCID:PMC8792375

[45]

Koodanjeri S,Ramamurthy V.Asymmetric induction with cyclodextrins: photocyclization of tropolone alkyl ethers.Tetrahedron2000;56:7003-9

[46]

Shailaja J,Ramamurthy V.Cyclodextrin mediated solvent-free enantioselective photocyclization of N-alkyl pyridones.Tetrahedron Lett2002;43:9335-9

[47]

Kaliappan R.Chiral photochemistry within natural and functionalized cyclodextrins: chiral induction in photocyclization products from carbonyl compounds.J Photoch Photobio A2009;207:144-52

[48]

Mansour AT,Xie J.β-cyclodextrin-mediated enantioselective photochemical electrocyclization of 1,3-dihydro-2H-azepin-2-one.J Org Chem2017;82:9832-6

[49]

Fukuhara G,Wada T.The first supramolecular photosensitization of enantiodifferentiating bimolecular reaction: anti-Markovnikov photoaddition of methanol to 1,1-diphenylpropene sensitized by modified beta-cyclodextrin.Chem Commun2006;1712-4

[50]

Fukuhara G,Inoue Y.Competitive enantiodifferentiating anti-Markovnikov photoaddition of water and methanol to 1,1-diphenylpropene using a sensitizing cyclodextrin host.J Org Chem2009;74:6714-27

[51]

Dong J,Cui Y.Supramolecular chirality in metal-organic complexes.Acc Chem Res2021;54:194-206

[52]

Jin Y,Zhang Y.Electron transfer in the confined environments of metal-organic coordination supramolecular systems.Chem Soc Rev2020;49:5561-600

[53]

Pan M,Zhang J.Chiral metal–organic cages/containers (MOCs): from structural and stereochemical design to applications.Coordin Chem Rev2019;378:333-49

[54]

Li K,Yan C.Stepwise assembly of Pd6(RuL3)8 nanoscale rhombododecahedral metal-organic cages via metalloligand strategy for guest trapping and protection.J Am Chem Soc2014;136:4456-9

[55]

Wu K,Hou YJ.Homochiral D4-symmetric metal-organic cages from stereogenic Ru(II) metalloligands for effective enantioseparation of atropisomeric molecules.Nat Commun2016;7:10487 PMCID:PMC4742817

[56]

Guo J,Li K.Regio- and enantioselective photodimerization within the confined space of a homochiral ruthenium/palladium heterometallic coordination cage.Angew Chem Int Ed Engl2017;56:3852-6

[57]

Guo J,Lu YL,Su CY.Visible-light photocatalysis of asymmetric [2+2] cycloaddition in cage-confined nanospace merging chirality with triplet-state photosensitization.Angew Chem Int Ed Engl2020;59:8661-9

[58]

Yoshizawa M,Fujita M.Diels-alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis.Science2006;312:251-4

[59]

Nishioka Y,Kawano M.Asymmetric [2 + 2] olefin cross photoaddition in a self-assembled host with remote chiral auxiliaries.J Am Chem Soc2008;130:8160-1

[60]

Chen J,Huang S.Catalytic enantioselective cycloaddition transformation of tricyclic arenes enabled by a dual-role chiral cage-reactor.ACS Catal2024;14:3733-41

[61]

Ruan J,Yin C.Enantioselective [2+2] cross-photocycloaddition enabled by a chiral cage reactor via multilevel-selectivity control.ACS Catal2024;14:7321-31

[62]

Xiao JD.Metal-organic frameworks for photocatalysis and photothermal catalysis.Acc Chem Res2019;52:356-66

[63]

Wang J,Lin W.Metal–organic frameworks for light harvesting and photocatalysis.ACS Catal2012;2:2630-40

[64]

Qiu X,Zhu Y.Applications of nanomaterials in asymmetric photocatalysis: recent progress, challenges, and opportunities.Adv Mater2021;33:e2001731

[65]

Chen XY,Đorđević L.Selective photodimerization in a cyclodextrin metal-organic framework.J Am Chem Soc2021;143:9129-39

[66]

Wu P,Wang J.Photoactive chiral metal-organic frameworks for light-driven asymmetric α-alkylation of aldehydes.J Am Chem Soc2012;134:14991-9

[67]

Xia Z,Wang X.Modifying electron transfer between photoredox and organocatalytic units via framework interpenetration for β-carbonyl functionalization.Nat Commun2017;8:361 PMCID:PMC5572462

[68]

Zhang Y,Shi L.Tunable chiral metal organic frameworks toward visible light-driven asymmetric catalysis.Sci Adv2017;3:e1701162 PMCID:PMC5562422

[69]

Hu YH,Wang JC,Kan X.TiO2@UiO-68-CIL: a metal-organic-framework-based bifunctional composite catalyst for a one-pot sequential asymmetric Morita-Baylis-Hillman reaction.Inorg Chem2019;58:4722-30

[70]

Wang S,Wang J.Mechanochemical encapsulation of enzymes into MOFs for photoenzymatic enantioselective catalysis.ACS Mater Lett2024;6:2609-16

[71]

Liu W,Yang X.Template-directed fabrication of highly efficient metal-organic framework photocatalysts.ACS Appl Mater Interfaces2021;13:58619-29

[72]

Kushnarenko A,Guselnikova O.Merging gold plasmonic nanoparticles and L-proline inside a MOF for plasmon-induced visible light chiral organocatalysis at low temperature.Nanoscale2024;16:5313-22

[73]

Lee JM.Advances in conjugated microporous polymers.Chem Rev2020;120:2171-214 PMCID:PMC7145355

[74]

Yang L,Zhao K.Photoactive covalent organic frameworks for catalyzing organic reactions.Chempluschem2022;87:e202200281

[75]

Feng X,Jiang D.Covalent organic frameworks.Chem Soc Rev2012;41:6010-22

[76]

Ding SY.Covalent organic frameworks (COFs): from design to applications.Chem Soc Rev2013;42:548-68

[77]

He T.Covalent organic frameworks for energy conversion in photocatalysis.Angew Chem Int Ed Engl2023;62:e202303086

[78]

Kang X,Spector-Watts BM.Challenges and opportunities for chiral covalent organic frameworks.Chem Sci2022;13:9811-32 PMCID:PMC9431510

[79]

Kang X,Han X,Liu Y.Rational synthesis of interpenetrated 3D covalent organic frameworks for asymmetric photocatalysis.Chem Sci2019;11:1494-502 PMCID:PMC8148036

[80]

Li C,Liu H.Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage.Chinese J Catal2020;41:1288-97

[81]

Zhou Z,Dai L,Li Y.The synthesis of highly crystalline covalent organic frameworks via the monomer crystal induction for the photocatalytic asymmetric α‐alkylation of aldehydes.J Polym Sci2024;62:1621-8

[82]

Ma HC,Chen GJ.A BINOL-phosphoric acid and metalloporphyrin derived chiral covalent organic framework for enantioselective α-benzylation of aldehydes.Chem Sci2022;13:1906-11 PMCID:PMC8848806

[83]

He T,Wang S.Bottom-up design of photoactive chiral covalent organic frameworks for visible-light-driven asymmetric catalysis.J Am Chem Soc2023;145:18015-21

[84]

Kan X,Chen Z.Synthesis of metal-free chiral covalent organic framework for visible-light-mediated enantioselective photooxidation in water.J Am Chem Soc2022;144:6681-6

[85]

Ma HC,Chen GJ.Photothermal conversion triggered thermal asymmetric catalysis within metal nanoparticles loaded homochiral covalent organic framework.Nat Commun2019;10:3368 PMCID:PMC6662712

[86]

Ma HC,Huang F.Homochiral covalent organic framework for catalytic asymmetric synthesis of a drug intermediate.J Am Chem Soc2020;142:12574-8

[87]

Jin C,Lin E.Enzyme immobilization in porphyrinic covalent organic frameworks for photoenzymatic asymmetric catalysis.ACS Catal2022;12:8259-68

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/