Recent advances in green synthesis of porous organic frameworks

Hao-Ming Wen , Shan Zhang , Ping Li , Xinying Kong , Rongrong Yuan , Hongming He

Chemical Synthesis ›› 2026, Vol. 6 ›› Issue (1) : 6

PDF
Chemical Synthesis ›› 2026, Vol. 6 ›› Issue (1) :6 DOI: 10.20517/cs.2024.55
Review

Recent advances in green synthesis of porous organic frameworks

Author information +
History +
PDF

Abstract

Recently, porous organic frameworks (POFs) have emerged as functional materials and have been widely used in various applications. Crystalline POFs include covalent organic frameworks (COFs) and partial crystalline covalent triazine frameworks (CTFs). Amorphous porous organic materials are mainly divided into porous aromatic frameworks (PAFs), conjugated microporous polymers (CMPs), and hypercrosslinked porous polymers (HCPs). Although POFs have many unique structural features and excellent performance, the harsh synthesis conditions and difficulty in large-scale production have always limited their widespread use. Therefore, more researchers are paying attention to developing green, energy-saving, and environmentally friendly synthesis processes for large-scale preparation of POFs. Herein, we provide a timely overview on green synthesis of POFs and critically discuss some typical research work in detail. Meanwhile, the green synthesis strategies of POFs are emphatically described to categorize relevant reports. Finally, the challenges and opportunities of green synthetic POFs in the future are proposed according to the above classification research.

Keywords

Green synthesis / porous organic frameworks / crystalline materials / amorphous materials

Cite this article

Download citation ▾
Hao-Ming Wen, Shan Zhang, Ping Li, Xinying Kong, Rongrong Yuan, Hongming He. Recent advances in green synthesis of porous organic frameworks. Chemical Synthesis, 2026, 6(1): 6 DOI:10.20517/cs.2024.55

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao D.Pore engineering for high performance porous materials.ACS Cent Sci2023;9:1499-503 PMCID:PMC10450870

[2]

Wang Y,Liu Q,Liu C.Intergrowth zeolites, synthesis, characterization, and catalysis.Chem Rev2023;123:11664-721

[3]

Chen LH,Wang Z,Xie Z.Hierarchically structured zeolites: from design to application.Chem Rev2020;120:11194-294

[4]

Yang C,Pan H,Cao J.Facile preparation of N-doped porous carbon from chitosan and NaNH2 for CO2 adsorption and conversion.Chem Eng J2022;432:134347

[5]

Oliveira ADND,Ferreira IM.Valorization of silica-based residues for the synthesis of ordered mesoporous silicas and their applications.Micropor Mesopor Mat2023;354:112520

[6]

Su Z.Porous noble metal electrocatalysts: synthesis, performance, and development.Small2021;17:e2005354

[7]

Hajivand P,Pardo E,Mastropietro TF.Application of metal-organic frameworks for sensing of VOCs and other volatile biomarkers.Coordin Chem Rev2024;501:215558

[8]

Tian Y,Peng Y,Zhang Z.State of the art, challenges and prospects in metal–organic frameworks for the separation of binary propylene/propane mixtures.Coordin Chem Rev2024;506:215697

[9]

Hao Q,Ding X.Porous organic polymers: a progress report in China.Sci China Chem2023;66:620-82

[10]

Diercks CS.The atom, the molecule, and the covalent organic framework.Science2017;355:eaal1585

[11]

Liu M,Wang S.Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers.Angew Chem Int Ed Engl2018;57:11968-72

[12]

Yuan Y,Zhu G.Molecularly imprinted porous aromatic frameworks for molecular recognition.ACS Cent Sci2020;6:1082-94 PMCID:PMC7379099

[13]

Ma Y,Rong H.Continuous porous aromatic framework membranes with modifiable sites for optimized gas separation.Angew Chem Int Ed Engl2022;61:e202113682

[14]

Shen X,Matsuo Y.Polarity engineering of porous aromatic frameworks for specific water contaminant capture.J Mater Chem A2019;7:2507-12

[15]

Gong J,Chen B.Conjugated microporous polymers with rigid backbones for organic solvent nanofiltration.Chem2018;4:2269-71

[16]

Tantisriyanurak S,Peattie L.Acid functionalized conjugated microporous polymers as a reusable catalyst for biodiesel production.ACS Appl Polym Mater2020;2:3908-15

[17]

Giri A,Hussain MW,Patra A.Nanostructured hypercrosslinked porous organic polymers: morphological evolution and rapid separation of polar organic micropollutants.ACS Appl Mater Interfaces2022;14:7369-81

[18]

Zhang W,Ma L,Wang J.Imidazolium-functionalized ionic hypercrosslinked porous polymers for efficient synthesis of cyclic carbonates from simulated flue gas.ChemSusChem2020;13:341-50

[19]

Ren H.Porous organic frameworks: synthetic strategy and their applications.Acta Chim Sinica2015;73:587

[20]

Li W,Luo Q.Ionic liquids promoted synthesis, enhanced functions, and expanded applications of porous organic frameworks.Coordin Chem Rev2023;493:215304

[21]

He C,Chen Y.Microregulation of pore channels in covalent-organic frameworks used for the selective and efficient separation of ethane.ACS Appl Mater Interfaces2020;12:52819-25

[22]

Liu Y,Meng X.Molecular expansion for constructing porous organic polymers with high surface areas and well-defined nanopores.Angew Chem Int Ed Engl2020;59:19487-93

[23]

Cao L,Wang H.Rationally designed cyclooctatetrathiophene-based porous aromatic frameworks (COTh-PAFs) for efficient photocatalytic hydrogen peroxide production.Angew Chem Int Ed Engl2024;63:e202402095

[24]

Hauser BG,Exley J.Thermally enhancing the surface areas of Yamamoto-derived porous organic polymers.Chem Mater2013;25:12-6

[25]

Zhang Y,Zhang C.Multifunctional porous organic polymers as ideal platforms for gas uptake, metal-ions sensing, and cell imaging.Polym Chem2023;14:4199-204

[26]

Xue Y,Han Z.Electrochemical impedimetric aptasensors based on hyper-cross-linked porous organic frameworks for the determination of kanamycin.J Mater Chem C2021;9:12566-72

[27]

He H,Li P.Tailor-made yolk-shell nanocomposites of star-shape Au and porous organic polymer for nitrogen electroreduction to ammonia.Chem Eng J2023;476:146760

[28]

Xu Z,Wang S.Viologen-based cationic radical porous organic polymers for visible-light-driven photocatalytic oxidation.ACS Appl Polym Mater2024;6:701-11

[29]

Huang J,Liu C.Microporous nitrogen-rich polymers via ullmann coupling reaction for selective adsorption of C2H2 over CH4.Chin J Chem2023;41:514-20

[30]

Jadhav T,Patterson W,Hamzehpoor E.2D poly(arylene vinylene) covalent organic frameworks via aldol condensation of trimethyltriazine.Angew Chem Int Ed Engl2019;58:13753-7

[31]

Chen Y,Wang X,Tang A.Green synthesis of covalent organic frameworks based on reaction media.Mater Chem Front2021;5:1253-67

[32]

Azadi E.Green and facile preparation of covalent organic frameworks based on reaction medium for advanced applications.Chemistry2023;29:e202301837

[33]

Das S,Ben T.Porous organic materials: strategic design and structure-function correlation.Chem Rev2017;117:1515-63

[34]

Abdelnaby MM,Abdulazeez I.Novel porous organic polymer for the concurrent and selective removal of hydrogen sulfide and carbon dioxide from natural gas streams.ACS Appl Mater Interfaces2020;12:47984-92

[35]

Fan H,Strauss I,Meng H.High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation.J Am Chem Soc2020;142:6872-7

[36]

Nailwal Y,Pal SK.Luminescent conjugated microporous polymers for selective sensing and ultrafast detection of picric acid.ACS Appl Polym Mater2022;4:2648-55

[37]

Afshari M,Farrokhpour H.Imine-linked covalent organic framework with a naphthalene moiety as a sensitive phosphate ion sensing.ACS Appl Mater Interfaces2022;14:22398-406 PMCID:PMC9121346

[38]

Zhang Y,VanNatta P.Metal-free heterogeneous asymmetric hydrogenation of olefins promoted by chiral frustrated lewis pair framework.J Am Chem Soc2024;146:979-87

[39]

Chen M,Shi Q.How the π bridge in donor-π-acceptor type covalent triazine frameworks influenced their photocatalytic hydrogen evolution performance.Chem Eng J2023;475:146099

[40]

Yang S,Zou L.Construction of thiadiazole-linked covalent organic frameworks via facile linkage conversion with superior photocatalytic properties.Adv Sci2023;10:e2304697 PMCID:PMC10625113

[41]

Gu C,Chen Y.Porous organic polymer films with tunable work functions and selective hole and electron flows for energy conversions.Angew Chem Int Ed Engl2016;55:3049-53

[42]

Liao C.Tuning the physicochemical properties of reticular covalent organic frameworks (COFs) for biomedical applications.J Mater Chem B2021;9:6116-28

[43]

Prakash K,Díaz DD,Pachfule P.Strategic design of covalent organic frameworks (COFs) for photocatalytic hydrogen generation.J Mater Chem A2023;11:14489-538

[44]

Cui K,Xu X,Lyu P.Crystalline dual-porous covalent triazine frameworks as a new platform for efficient electrocatalysis.Angew Chem Int Ed Engl2024;63:e202317664

[45]

Xiong S,Lv F.Solvothermal synthesis and supercapacitive properties of highly electrochemical stable covalent organic frameworks with triazine building block.J Appl Polym Sci2023;140:e54538

[46]

Côté AP,Ockwig NW,Matzger AJ.Porous, crystalline, covalent organic frameworks.Science2005;310:1166-70

[47]

Li H,Li H,Dichtel WR.Nucleation and growth of covalent organic frameworks from solution: the example of COF-5.J Am Chem Soc2017;139:16310-8

[48]

Li X,Ma L.Construction of borate-ester-based COFs with high specific surface area for the detection of H2O content in the food field.Microchem J2024;199:109976

[49]

Chang PH,Reddy KSK,Chen CM.Polyimide-based covalent organic framework as a photocurrent enhancer for efficient dye-sensitized solar cells.ACS Appl Mater Interfaces2022;14:25466-77

[50]

DeBlase CR,Truong TT,Dichtel WR.β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage.J Am Chem Soc2013;135:16821-4

[51]

Yu H.Metal-free magnetism in chemically doped covalent organic frameworks.J Am Chem Soc2020;142:11013-21

[52]

Yang C,Qian C.Hollow sp2 -conjugated covalent organic framework encapsulating thiophene-based photosensitizer for enhanced visible-light-driven hydrogen evolution.J Mater Chem A2023;11:25899-909

[53]

Yang N,Shan Y.Dual rate-modulation approach for the preparation of crystalline covalent triazine frameworks displaying efficient sodium storage.ACS Macro Lett2022;11:60-5

[54]

Martín-Illán ,Gómez-Herrero J.Ultralarge free-standing imine-based covalent organic framework membranes fabricated via compression.Adv Sci2022;9:e2104643 PMCID:PMC8895050

[55]

Yao BJ,Huang N.Pd NP-loaded and covalently cross-linked COF membrane microreactor for aqueous CBs dechlorination at room temperature.ACS Appl Mater Interfaces2018;10:20448-57

[56]

Parvatkar PT,Shaikh AC.A tailored COF for visible-light photosynthesis of 2,3-dihydrobenzofurans.J Am Chem Soc2023;145:5074-82 PMCID:PMC9999419

[57]

Campbell A,Dun C.Dioxin-linked covalent organic framework-supported palladium complex for rapid room-temperature Suzuki–Miyaura coupling reaction.Crystals2023;13:1268

[58]

Luan TX,Wang JR.Highly effective generation of singlet oxygen by an imidazole-linked robust photosensitizing covalent organic framework.ACS Nano2022;16:21565-75

[59]

Seo JM,Jeon JP.Conductive and ultrastable covalent organic framework/carbon hybrid as an ideal electrocatalytic platform.J Am Chem Soc2022;144:19973-80

[60]

Jaryal R,Kumar R.Benzothiazole-derived covalent organic framework for multimedia iodine uptake.J Clust Sci2024;35:461-79

[61]

Yang Z,Wang S.Transformation strategy for highly crystalline covalent triazine frameworks: from staggered AB to eclipsed AA stacking.J Am Chem Soc2020;142:6856-60

[62]

Guo L,Zhan Z.Crystallization of covalent triazine frameworks via a heterogeneous nucleation approach for efficient photocatalytic applications.Chem Mater2021;33:1994-2003

[63]

Wang H,Qu Z.Increasing donor-acceptor interactions and particle dispersibility of covalent triazine frameworks for higher crystallinity and enhanced photocatalytic activity.ACS Appl Mater Interfaces2024;16:2296-308

[64]

Ma T,Yin SX.Single-crystal x-ray diffraction structures of covalent organic frameworks.Science2018;361:48-52

[65]

Xu HS,Li X.Single crystal of a one-dimensional metallo-covalent organic framework.Nat Commun2020;11:1434 PMCID:PMC7080745

[66]

Wang X,Murakami Y.Ionic additive strategy to control nucleation and generate larger single crystals of 3D covalent organic frameworks.Chem Commun2021;57:6656-9

[67]

Natraj A,Xin J.Single-crystalline imine-linked two-dimensional covalent organic frameworks separate benzene and cyclohexane efficiently.J Am Chem Soc2022;144:19813-24

[68]

Zhou Z,Zhang L.Linker-guided growth of single-crystal covalent organic frameworks.J Am Chem Soc2024;146:3449-57

[69]

Zhou Z,Yang Y.Growth of single-crystal imine-linked covalent organic frameworks using amphiphilic amino-acid derivatives in water.Nat Chem2023;15:841-7

[70]

Liu T.Porous organic materials offer vast future opportunities.Nat Commun2020;11:4984 PMCID:PMC7532140

[71]

Wang W,Yuan D.Carbon dioxide capture in amorphous porous organic polymers.J Mater Chem A2017;5:1334-47

[72]

Zhang Y.Functional porous organic polymers for heterogeneous catalysis.Chem Soc Rev2012;41:2083-94

[73]

Ben T,Ma S.Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area.Angew Chem Int Ed Engl2009;48:9457-60

[74]

Kim JH,Yun H.Post-synthetic modifications in porous organic polymers for biomedical and related applications.Chem Soc Rev2022;51:43-56

[75]

Zhang Z,Xue C,Han X.Amorphous porous organic polymers containing main group elements.Commun Chem2023;6:271 PMCID:PMC10713640

[76]

Yuan Y,Faheem M.A molecular coordination template strategy for designing selective porous aromatic framework materials for uranyl capture.ACS Cent Sci2019;5:1432-9 PMCID:PMC6716130

[77]

Ma T,Li Z.Efficient gold recovery from E-waste via a chelate-containing porous aromatic framework.ACS Appl Mater Interfaces2020;12:30474-82

[78]

Li B,Zhang Y.Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions.ACS Appl Mater Interfaces2017;9:12511-7

[79]

Luo D,Li QH.Green, general and low-cost synthesis of porous organic polymers in sub-kilogram scale for catalysis and CO2 capture.Angew Chem Int Ed Engl2023;62:e202305225

[80]

Park JI,Ko YJ.Room-temperature synthesis of a hollow microporous organic polymer bearing activated alkyne IR probes for nonradical thiol-yne click-based post-functionalization.Chem Asian J2021;16:1398-402

[81]

Zhang F,Liu Z.Facile room-temperature synthesis of novel porous three-component hybrid covalent organic polymers and their applications towards sulfadiazine adsorption.ChemistrySelect2019;4:12719-25

[82]

Zhao Y,Zhang Y,Sun B.Room temperature synthesis of piperazine-based nitrogen-rich porous organic polymers for efficient iodine adsorption.Micropor Mesopor Mat2024;366:112954

[83]

Ma W,He Y.Size-controllable synthesis of uniform spherical covalent organic frameworks at room temperature for highly efficient and selective enrichment of hydrophobic peptides.J Am Chem Soc2019;141:18271-7

[84]

Ma W,Zhong C.Room-temperature controllable synthesis of hierarchically flower-like hollow covalent organic frameworks for brain natriuretic peptide enrichment.Chem Commun2021;57:7362-5

[85]

Guo L,Yu Z,Luo F.Minute and large-scale synthesis of covalent-organic frameworks in water at room temperature by a two-step dissolution–precipitation method.Chem Mater2023;35:5648-56

[86]

Kong X,Strømme M.Ambient aqueous synthesis of imine-linked covalent organic frameworks (COFs) and fabrication of freestanding cellulose nanofiber@COF nanopapers.J Am Chem Soc2024;146:742-51 PMCID:PMC10785817

[87]

Liang J,Njegic B.Insight into bioactivity of in-situ trapped enzyme-covalent-organic frameworks.Angew Chem Int Ed Engl2023;62:e202303001

[88]

Zhou D,Wu H,Li M.Synthesis of C-C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid-liquid interface.Angew Chem Int Ed Engl2019;58:1376-81

[89]

Sahabudeen H,Ballabio M.Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis.Angew Chem Int Ed Engl2020;59:6028-36 PMCID:PMC7187418

[90]

He J,Li Z,Lan F.Catalyst regulated interfacial synthesis of self-standing covalent organic framework membranes at room temperature for molecular separation.J Colloid Interface Sci2023;629:428-37

[91]

Wu D,He H.Room-temperature interfacial synthesis of vinylene-bridged two-dimensional covalent organic framework thin film for nonvolatile memory.ACS Mater Lett2023;5:874-83

[92]

Chen J,Liu S.Surfactant-assisted interfacial polymerization towards high-crystallinity COF membranes for organic solvent nanofiltration.J Membrane Sci2024;694:122404

[93]

Li K,Liu D,Van der Bruggen B.Controllable and rapid synthesis of conjugated microporous polymer membranes via interfacial polymerization for ultrafast molecular separation.Chem Mater2021;33:7047-56

[94]

Zhang J,Guan L,Jin S.Rapid synthesis of covalent organic frameworks with a controlled morphology: an emulsion polymerization approach via the phase transfer catalysis mechanism.J Am Chem Soc2023;145:21974-82

[95]

Shi L,Wu Y.Controlled synthesis of mesoporous π-conjugated polymer nanoarchitectures as anodes for lithium-ion batteries.Macromol Rapid Commun2022;43:e2100897

[96]

Zhao W,Yang H.Using sound to synthesize covalent organic frameworks in water.Nat Synth2022;1:87-95

[97]

Wang H,Li Y.Aqueous two-phase interfacial assembly of COF membranes for water desalination.Nanomicro Lett2022;14:216 PMCID:PMC9646690

[98]

Hu F,Liu Y.Aqueous sol-gel synthesis and shaping of covalent organic frameworks.J Am Chem Soc2023;145:27718-27

[99]

Zhang Z.Hydrothermal synthesis of highly crystalline zwitterionic vinylene-linked covalent organic frameworks with exceptional photocatalytic properties.J Am Chem Soc2023;145:25222-32

[100]

Yang Y,Liu C.On-water surface synthesis of vinylene-linked cationic two-dimensional polymer films as the anion-selective electrode coating.Angew Chem Int Ed Engl2024;63:e202316299

[101]

Liu Y,Li H.Ambient aqueous-phase synthesis of covalent organic frameworks for degradation of organic pollutants.Chem Sci2019;10:10815-20 PMCID:PMC7066675

[102]

Martín-Illán ,Franco C.Green synthesis of imine-based covalent organic frameworks in water.Chem Commun2020;56:6704-7

[103]

Zhao B,Chen B.Facile green synthesis of magnetic porous organic polymers for fast preconcentration of trace lead and mercury from environmental water followed by graphite furnace atomic absorption spectrometry detection.Spectrochim Acta B2022;196:106524

[104]

Huang L,Chen B,Hu B.Facile green synthesis of magnetic porous organic polymers for rapid removal and separation of methylene blue.ACS Sustain Chem Eng2017;5:4050-5

[105]

Kuhn P,Thomas A.Porous, covalent triazine-based frameworks prepared by ionothermal synthesis.Angew Chem Int Ed Engl2008;47:3450-3

[106]

Dong B,Wang W,Ren G.Post synthesis of a glycine-functionalized covalent triazine framework with excellent CO2 capture performance.Micropor Mesopor Mat2020;306:110475

[107]

Jiang K,Tranca D.Covalent triazine frameworks and porous carbons: perspective from an azulene-based case.Macromol Rapid Commun2022;43:e2200392

[108]

Mohamed MG,Liu NY.Ultrastable covalent triazine organic framework based on anthracene moiety as platform for high-performance carbon dioxide adsorption and supercapacitors.Int J Mol Sci2022;23:3174 PMCID:PMC8951433

[109]

Wang G,Zhao S.Newly designed covalent triazine framework based on novel N-heteroaromatic building blocks for efficient CO2 and H2 capture and storage.ACS Appl Mater Interfaces2018;10:1244-9

[110]

Mohamed MG,Takashi Y.Ultrastable conductive microporous covalent triazine frameworks based on pyrene moieties provide high-performance CO2 uptake and supercapacitance.New J Chem2020;44:8241-53

[111]

Rangaraj VM,Karanikolos GN.Ionothermal synthesis of phosphonitrilic-core covalent triazine frameworks for carbon dioxide capture.Chem Eng J2022;429:132160

[112]

Lan ZA,Fang Z.Ionothermal synthesis of covalent triazine frameworks in a NaCl-KCl-ZnCl2 eutectic salt for the hydrogen evolution reaction.Angew Chem Int Ed Engl2022;61:e202201482

[113]

Wang C,Chen Z.Green and scalable synthesis of atomic-thin crystalline two-dimensional triazine polymers with ultrahigh photocatalytic properties.J Am Chem Soc2023;145:12745-54

[114]

Yu SY,Noh HJ.Direct synthesis of a covalent triazine-based framework from aromatic amides.Angew Chem Int Ed Engl2018;57:8438-42

[115]

Niu F,Tao L.Covalent triazine-based frameworks for NH3 gas sensing at room temperature.Sensor Actuat B Chem2020;321:128513

[116]

Sun T,Luo W,Cao X.A general strategy for kilogram-scale preparation of highly crystal-line covalent triazine frameworks.Angew Chem Int Ed Engl2022;61:e202203327

[117]

Zhang P,Wang S.Fabricating industry-compatible olefin-linked COF resins for oxoanion pollutant scavenging.Angew Chem Int Ed Engl2022;61:e202213247

[118]

Wang Z,Wang T.Organic flux synthesis of covalent organic frameworks.Chem2023;9:2178-93

[119]

Krusenbaum A,Tigineh GT,Kim JG.The mechanochemical synthesis of polymers.Chem Soc Rev2022;51:2873-905 PMCID:PMC8978534

[120]

Kubota K.Mechanochemical cross-coupling reactions.Trend Chem2020;2:1066-81

[121]

Leonardi M,Menéndez JC.Multicomponent mechanochemical synthesis.Chem Sci2018;9:2042-64 PMCID:PMC5909673

[122]

Shinde DB,Bhadra M.A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte.J Mater Chem A2016;4:2682-90

[123]

Liu W,Wang W.Mechanochromic luminescent covalent organic frameworks for highly selective hydroxyl radical detection.Chem Commun2018;55:167-70

[124]

Zhang X,Yan Y,Ye Q.Mechanochemical synthesis of thiadiazole functionalized COF as oil-based lubricant additive for reducing friction and wear.Langmuir2024;40:4373-81

[125]

Rajput L.Mechanochemical synthesis of amide functionalized porous organic polymers.Cryst Growth Des2014;14:2729-32

[126]

Li G,Fang Q.Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (II).Chem Eng J2019;370:822-30

[127]

Jie K,Sun Q.Mechanochemical synthesis of pillar[5]quinone derived multi-microporous organic polymers for radioactive organic iodide capture and storage.Nat Commun2020;11:1086 PMCID:PMC7046611

[128]

Troschke E,Lübken T.Mechanochemical Friedel-Crafts alkylation-A sustainable pathway towards porous organic polymers.Angew Chem Int Ed Engl2017;56:6859-63

[129]

Chen X,Zhong Y,Ren H.Synthesis of a series of porous aromatic frameworks by mechanical ball milling.New J Chem2022;46:22504-8

[130]

Krusenbaum A,Kraus FJL.The mechanochemical Friedel-Crafts polymerization as a solvent-free cross-linking approach toward microporous polymers.J Polym Sci2022;60:62-71

[131]

Yuan R,Shaga A.Solvent-free mechanochemical synthesis of a carbazole-based porous organic polymer with high CO2 capture and separation.J Solid State Chem2020;287:121327

[132]

Krusenbaum A,Hutsch S.The rapid mechanochemical synthesis of microporous covalent triazine networks: elucidating the role of chlorinated linkers by a solvent-free approach.Adv Sustain Syst2023;7:2200477

[133]

Pan Q,Deng S.A mechanochemically synthesized porous organic polymer derived CQD/chitosan-graphene composite film electrode for electrochemiluminescence determination of dopamine.RSC Adv2019;9:39332-7 PMCID:PMC9076069

[134]

Zhang P,Wan S.Charged porous polymers using a solid C-O cross-coupling reaction.Chemistry2015;21:12866-70

[135]

Hou S,Liu D.Mechanochemical process to construct porous ionic polymers by menshutkin reaction.ChemSusChem2021;14:3059-63

[136]

Tao Y,Kong HY.Electrochemical preparation of porous organic polymer films for high-performance memristors.Angew Chem Int Ed Engl2022;61:e202205796

[137]

Zhang M,Zhao S.Electropolymerization of molecular-sieving polythiophene membranes for H2 separation.Angew Chem Int Ed Engl2019;58:8768-72

[138]

Gu C,Chen Y.π-Conjugated microporous polymer films: designed synthesis, conducting properties, and photoenergy conversions.Angew Chem Int Ed Engl2015;54:13594-8 PMCID:PMC4678513

[139]

Shirokura T,Sato K.Site-selective synthesis and concurrent immobilization of imine-based covalent organic frameworks on electrodes using an electrogenerated acid.Angew Chem Int Ed Engl2023;62:e202307343

[140]

Wang M,Zhao J.Electrochemical interfacial polymerization toward ultrathin COF membranes for brine desalination.Angew Chem Int Ed Engl2023;62:e202219084

[141]

Wang L,Zhang W.Electrocleavage synthesis of solution-processed, imine-linked, and crystalline covalent organic framework thin films.J Am Chem Soc2022;144:8961-8

[142]

Gu C,Gao J,Xu Y.Controlled synthesis of conjugated microporous polymer films: versatile platforms for highly sensitive and label-free chemo- and biosensing.Angew Chem Int Ed Engl2014;53:4850-5

[143]

Long J,Huang Z.Electropolymerization of preferred-oriented conjugated microporous polymer films for enhanced fluorescent sensing.Chemistry2024;30:e202304268

[144]

Gu C,Wu Y,Jiang D.Design of highly photofunctional porous polymer films with controlled thickness and prominent microporosity.Angew Chem Int Ed Engl2015;54:11540-4 PMCID:PMC4600238

[145]

Zhou Z,Shinde DB.Precise sub-angstrom ion separation using conjugated microporous polymer membranes.ACS Nano2021;15:11970-80

[146]

Zhou Z,Guo D.Flexible ionic conjugated microporous polymer membranes for fast and selective ion transport.Adv Funct Mater2022;32:2108672

[147]

Chen D,Zhao X.Self-standing porous aromatic framework electrodes for efficient electrochemical uranium extraction.ACS Cent Sci2023;9:2326-32 PMCID:PMC10755849

[148]

Kim S,Lee M.Rapid photochemical synthesis of sea-urchin-shaped hierarchical porous COF-5 and its lithography-free patterned growth.Adv Funct Mater2017;27:1700925

[149]

Wei H,Hu N,Wei L.The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity.Chem Commun2015;51:12178-81

[150]

Alsudairy Z,Yang C.Facile microwave-assisted synthesis of 2D imine-linked covalent organic frameworks for exceptional iodine capture.Precis Chem2023;1:233-40 PMCID:PMC10302871

[151]

Wang X,Li M,Miao C.An integrated solid-state lithium-oxygen battery with highly stable anionic covalent organic frameworks electrolyte.Chem2023;9:394-410

[152]

Wu CJ,Li TR.Natural sunlight photocatalytic synthesis of benzoxazole-bridged covalent organic framework for photocatalysis.J Am Chem Soc2022;144:18750-5

[153]

Wang F,Wang B,Long Y.Green method to fabricate porous microspheres for ultrasensitive SERS detection using UV light.RSC Adv2016;6:100519-25

[154]

Jaszcz K.Highly porous crosslinked poly(ester-anhydride) microspheres with high loading efficiency.Chin J Polym Sci2015;33:1271-82

[155]

Tao J,Chen Y.A facile one-pot strategy for the preparation of porous polymeric microspheres via UV irradiation-induced polymerization in emulsions.Soft Matter2023;19:1407-17

AI Summary AI Mindmap
PDF

5

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/