Synthesis and regulation strategies for enhancing the electrochemical performance of sodium-ion battery anode materials

Yuan-Ting Lin , Bi-Li Lin , Bai-Tong Niu , Xiao-Ping Chen , Hong-Xu Guo , Xiu-Mei Lin

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) : 37

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) :37 DOI: 10.20517/cs.2024.53
review-article

Synthesis and regulation strategies for enhancing the electrochemical performance of sodium-ion battery anode materials

Author information +
History +
PDF

Abstract

Rechargeable sodium-ion batteries (SIBs) have attracted increasing research interest because of their inherent advantages such as a similar working principle to lithium-ion batteries (LIBs) and plentiful, even-distributed, and inexpensive Na resources. However, Na ions possess a larger ionic radius (1.07 Å) compared to that of Li ions (0.76 Å), which brings key challenges such as irreversible capacity loss, sluggish kinetics, a considerable volume expansion, and low initial coulombic efficiency (ICE) of SIBs, especially for anodes. Despite these challenges, there have been ongoing efforts to develop various synthesis and regulation strategies to enhance the electrochemical performance of SIB anode materials and they are summarized here. In this review, the significance of developing SIBs, the types of SIB anode materials, and the key issues SIB anode materials face are discussed first. Then various developed synthesis and regulation strategies such as compositional, structural, and interfacial regulations based on different synthesis methods to enhance the electrochemical performance of SIB anode materials are summarized. Finally, in conclusions and outlooks, the present status of SIB anode materials is concluded and the future development directions are proposed.

Keywords

Sodium-ion battery anode materials / intercalation / conversion / alloying / compositional / structural / interfacial regulations

Cite this article

Download citation ▾
Yuan-Ting Lin, Bi-Li Lin, Bai-Tong Niu, Xiao-Ping Chen, Hong-Xu Guo, Xiu-Mei Lin. Synthesis and regulation strategies for enhancing the electrochemical performance of sodium-ion battery anode materials. Chemical Synthesis, 2025, 5(2): 37 DOI:10.20517/cs.2024.53

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li M,Chen Z.30 years of lithium-ion batteries.Adv Mater2018;30:e1800561

[2]

Weiss M,Kasnatscheew J.Fast charging of lithium-ion batteries: a review of materials aspects.Adv Energy Mater2021;11:2101126

[3]

Xu J,Cai S.High-energy lithium-ion batteries: recent progress and a promising future in applications.Energy Environ Maters2023;6:e12450

[4]

Nayak PK,Brehm W.From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises.Angew Chem Int Ed Engl2018;57:102-20

[5]

Chayambuka K,Danilov DL.From Li-ion batteries toward Na-ion chemistries: challenges and opportunities.Adv Energy Mater2020;10:2001310

[6]

Huang Y,Li L,Wu F.Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application.Adv Mater2019;31:e1808393

[7]

Qiao S,Ma M,Dou SX.Advanced anode materials for rechargeable sodium-ion batteries.ACS Nano2023;17:11220-52

[8]

Chen J,Li L,Chua DHC.Optimization strategies toward functional sodium-ion batteries.Energy Environ Mater2023;6:e12633

[9]

Chen X,Aslam J,Wang Y.Recent progress and design principles for rechargeable lithium organic batteries.Electrochem Energy Rev2022;5:135

[10]

Wu X,Yuan J.Thiophene functionalized porphyrin complexes as novel bipolar organic cathodes with high energy density and long cycle life.Energy Storage Mater2022;46:252-8

[11]

Yang G,Zhao Q.Advanced organic electrode materials for aqueous rechargeable batteries.Sci China Chem2024;67:137-64

[12]

Zhang X,Madanu TL,Shu J.Aqueous batteries: from laboratory to market.Natl Sci Rev2023;10:nwad235 PMCID:PMC10583273

[13]

Zhang H,Liu X.Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems.Adv Energy Mater2023;13:2300149

[14]

Yao H,Xin S.Air-stability of sodium-based layered-oxide cathode materials.Sci China Chem2022;65:1076-87

[15]

Ma Y,Pramudya Y.Resolving the role of configurational entropy in improving cycling performance of multicomponent hexacyanoferrate cathodes for sodium-ion batteries.Adv Funct Mater2022;32:2202372

[16]

Hao Z,Yang Z.The distance between phosphate-based polyanionic compounds and their practical application for sodium-ion batteries.Adv Mater2024;36:e2305135

[17]

Pramanik A,Sougrati MT,Lightfoot P.K2Fe(C2O4)2: an oxalate cathode for Li/Na-ion batteries exhibiting a combination of multielectron cation and anion redox.Chem Mater2023;35:2600-11 PMCID:PMC10061677

[18]

Lin X,Chen H.In situ characterizations of advanced electrode materials for sodium-ion batteries toward high electrochemical performances.J Energy Chem2023;76:146-64

[19]

Chen X,Fang Y.Understanding of the sodium storage mechanism in hard carbon anodes.Carbon Energy2022;4:1133-50

[20]

Zhao L,Lai W.Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts.Adv Energy Mater2021;11:2002704

[21]

Li Y,Adelhelm P,Hu YS.Intercalation chemistry of graphite: alkali metal ions and beyond.Chem Soc Rev2019;48:4655-87

[22]

Peng P,Li X.Toward superior lithium/sodium storage performance: design and construction of novel TiO2-based anode materials.Rare Met2021;40:3049-75

[23]

Dong J,Wang R,An Q.Review and prospects on the low-voltage Na2Ti3O7 anode materials for sodium-ion batteries.J Energy Chem2024;88:446-60

[24]

Yang Z,Kintner-Meyer MC.Electrochemical energy storage for green grid.Chem Rev2011;111:3577-613

[25]

Lin X,Fan J.Synthesis and operando sodiation mechanistic study of nitrogen-doped porous carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode.Adv Energy Mater2019;9:1902312

[26]

Konkena B,Kaur H.Cobalt oxide 2D nanosheets formed at a polarized liquid|liquid interface toward high-performance Li-ion and Na-ion battery anodes.ACS Appl Mater Interfaces2023;15:58320-32 PMCID:PMC10739576

[27]

Yang XT,Wang YH.Understanding the origin of the improved sodium ion storage performance of the transition metal oxide@carbon nanocomposite anodes.J Chem Phys2023;158:174708

[28]

Wu Y,Wang L.Recent progress on modification strategies of alloy-based anode materials for alkali-ion batteries.Chem Res Chin Univ2021;37:200-9

[29]

Wu X,Hu R,Yu Y.Tin-based anode materials for stable sodium storage: progress and perspective.Adv Mater2022;34:e2106895

[30]

Tan M,Li Z,Lei D.Compact Sn/C composite realizes long-life sodium-ion batteries.Nano Res2023;16:3804-13

[31]

Huang H,Feng Y.Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering.Adv Mater2020;32:e1904320

[32]

Guo S,Sun Y.Recent advances in titanium-based electrode materials for stationary sodium-ion batteries.Energy Environ Sci2016;9:2978-3006

[33]

Lao M,Luo W,Sun W.Alloy-based anode materials toward advanced sodium-ion batteries.Adv Mater2017;29:1700622

[34]

Zhang M,Wu F,Wu C.Boost sodium-ion batteries to commercialization: strategies to enhance initial coulombic efficiency of hard carbon anode.Nano Energy2021;82:105738

[35]

He H,Tang Y,Shao M.Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries.Energy Storage Mater2019;23:233-51

[36]

Li Y,Liu B,Liang X.Heteroatom doping: an effective way to boost sodium ion storage.Adv Energy Mater2020;10:2000927

[37]

Zhao R,Xu B.Recent advances in heterostructured carbon materials as anodes for sodium-ion batteries.Small Struct2021;2:2100132

[38]

Li Y,Li Y.Ether-based electrolytes for sodium ion batteries.Chem Soc Rev2022;51:4484-536

[39]

Tian Z,Liu G.Electrolyte solvation structure design for sodium ion batteries.Adv Sci2022;9:e2201207 PMCID:PMC9353483

[40]

Cheng H,Li L.Emerging era of electrolyte solvation structure and interfacial model in batteries.ACS Energy Lett2022;7:490-513

[41]

Pei Z,Wei L,Chen Y.Toward efficient and high rate sodium-ion storage: a new insight from dopant-defect interplay in textured carbon anode materials.Energy Storage Mater2020;28:55-63

[42]

Jin Q,Feng P,Cheng S.Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries.Energy Storage Mater2020;27:43-50

[43]

Xie F,Zhang Q.Screening heteroatom configurations for reversible sloping capacity promises high-power Na-ion batteries.Angew Chem Int Ed Engl2022;61:e202116394

[44]

Wu S,Xu J.Nitrogen/phosphorus co-doped ultramicropores hard carbon spheres for rapid sodium storage.Carbon2024;218:118756

[45]

Mehmood A,Koyutürk B,Chung KY.Nanoporous nitrogen doped carbons with enhanced capacity for sodium ion battery anodes.Energy Storage Mater2020;28:101-11

[46]

Tao S,Zheng J.Soybean roots-derived N, P Co-doped mesoporous hard carbon for boosting sodium and potassium-ion batteries.Carbon2021;178:233-42

[47]

Yan J,Wang K.Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode.Adv Energy Mater2021;11:2003911

[48]

Fan M,Zhang P.Synergistic effect of nitrogen and sulfur dual-doping endows TiO2 with exceptional sodium storage performance.Adv Energy Mater2021;11:2003037

[49]

Luo S,Soule L.Enhanced ionic/electronic transport in nano-TiO2/sheared CNT composite electrode for Na+ insertion-based hybrid ion-capacitors.Adv Funct Mater2020;30:1908309

[50]

Wang C,Wang X,Zhao XS.Hollow rutile cuboid arrays grown on carbon fiber cloth as a flexible electrode for sodium-ion batteries.Adv Funct Mater2020;30:2002629

[51]

Lv D,Wang N.Nitrogen and fluorine co-doped TiO2/carbon microspheres for advanced anodes in sodium-ion batteries: high volumetric capacity, superior power density and large areal capacity.J Energy Chem2022;68:104-12

[52]

Wang C,Wang M.Highly conductive hierarchical TiO2 micro-sheet enables thick electrodes in sodium storage.Adv Funct Mater2024;34:2301996

[53]

Guan S,Shen Z,Sun Y.Heterojunction TiO2@TiOF2 nanosheets as superior anode materials for sodium-ion batteries.J Mater Chem A2021;9:5720-9

[54]

Xu X,Hu J.Heterostructured TiO2 spheres with tunable interiors and shells toward improved packing density and pseudocapacitive sodium storage.Adv Mater2019;31:e1904589

[55]

Meng W,Li D,Fang D.Interface and defect engineered titanium-base oxide heterostructures synchronizing high-rate and ultrastable sodium storage.Adv Energy Mater2022;12:2201531

[56]

Zhao Q,Qian T.PVP-assisted synthesis of ultrafine transition metal oxides encapsulated in nitrogen-doped carbon nanofibers as robust and flexible anodes for sodium-ion batteries.Carbon2021;174:325-34

[57]

Hou T,Sun X.Covalent coupling-stabilized transition-metal sulfide/carbon nanotube composites for lithium/sodium-ion batteries.ACS Nano2021;15:6735-46

[58]

Chen Y,Guo X.Bimetallic sulfide SnS2/FeS2 nanosheets as high-performance anode materials for sodium-ion batteries.ACS Appl Mater Interfaces2021;13:39248-56

[59]

Muhammad M, Liu Y, Sheng L, Haruna B, Hu X, Wen Z. Phase engineering of nickel-based sulfides toward robust sodium-ion batteries.J Colloid Interface Sci2023;646:245-53

[60]

Wang X,Chen Y,Zhao J.Optimizing electron spin-polarized states of MoSe2/Cr2Se3 heterojunction-embedded carbon nanospheres for superior sodium/potassium-ion battery performances.Small2024;20:e2312130

[61]

Chen H,Fu L,Liu Q.Hollow spheres of solid solution Fe7Ni3S11/CN as advanced anode materials for sodium ion batteries.Chem Eng J2022;430:132688

[62]

Wang Z,Wang D.Constructing N-doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries.Chem Eng J2020;384:123327

[63]

Ma W,Gao H.A mesoporous antimony-based nanocomposite for advanced sodium ion batteries.Energy Storage Mater2018;13:247-56

[64]

Edison E,Ren H,Madhavi S.Microstructurally engineered nanocrystalline Fe–Sn–Sb anodes: towards stable high energy density sodium-ion batteries.J Mater Chem A2019;7:14145-52

[65]

Chen L,Chen H,Wei M.N-doped carbon encapsulating Bi nanoparticles derived from metal–organic frameworks for high-performance sodium-ion batteries.J Mater Chem A2021;9:22048-55

[66]

Gao H,Zhang C,Zhang Z.A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries.ACS Nano2018;12:3568-77

[67]

Ma W,Gao H,Peng Z.Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries.Nano Energy2018;54:349-59

[68]

Lei S,Hu X.Heteroatomic phosphorus selenides molecules encapsulated in porous carbon as a highly reversible anode for sodium-ion batteries.Mater Today Nano2023;22:100344

[69]

Xu Z,Guo Z.The role of hydrothermal carbonization in sustainable sodium-ion battery anodes.Adv Energy Mater2022;12:2200208

[70]

Lu Y,Qi X.Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance.Adv Energy Mater2018;8:1800108

[71]

Zhao J,Lai W.Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries.Adv Energy Mater2023;13:2300444

[72]

Wang J,He X,Li L.Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries.Sustainable Mater Technol2022;33:e00446

[73]

Meng Q,Ding F,Chen L.Tuning the closed pore structure of hard carbons with the highest Na storage capacity.ACS Energy Lett2019;4:2608-12

[74]

Kamiyama A,Igarashi D.MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery.Angew Chem Int Ed Engl2021;60:5114-20 PMCID:PMC7986697

[75]

Li Y,Meng Q.Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance.Adv Energy Mater2019;9:1902852

[76]

Li Q,Tao Y.Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries.Natl Sci Rev2022;9:nwac084 PMCID:PMC9385462

[77]

Ma L,Zhang W.Ultrahigh rate capability and ultralong cycling stability of sodium-ion batteries enabled by wrinkled black titania nanosheets with abundant oxygen vacancies.Nano Energy2018;53:91-6

[78]

Han M,Liu J.Pressure-induced defects and reduced size endow TiO2 with high capacity over 20 000 cycles and excellent fast-charging performance in sodium ion batteries.Small2024;20:e2312119

[79]

Hwang J,Yun B.Carbon-free TiO2 microspheres as anode materials for sodium ion batteries.ACS Energy Lett2019;4:494-501

[80]

Yang J,Xu L,Peng C.Self-assembled titanium-deficient undoped anatase TiO2 nanoflowers for ultralong-life and high-rate Li+/Na+ storage.Chem Eng J2022;445:136638

[81]

Lan K,Zhang JY.Precisely designed mesoscopic titania for high-volumetric-density pseudocapacitance.J Am Chem Soc2021;143:14097-105

[82]

Xia Q,Lin Z.Confining ultrathin 2D superlattices in mesoporous hollow spheres renders ultrafast and high-capacity Na-ion storage.Adv Energy Mater2020;10:2001033

[83]

Liu S,Chen S.TiO2 bunchy hierarchical structure with effective enhancement in sodium storage behaviors.Carbon Energy2022;4:645-53

[84]

Yang D,Zhao Q.Three-dimensional nitrogen-doped holey graphene and transition metal oxide composites for sodium-ion batteries.J Mater Chem A2019;7:363-71

[85]

Khan R,Ahmad W.Role of moderate strain engineering in Nickel Sulfide anode for advanced sodium-ion batteries.J Alloys Compd2023;963:171196

[86]

Li R,Pan J.Micrometer-sized, dual-conductive MoO2/β-MoO3-x mosaics for high volumetric capacity Li/Na-ion batteries.Small Methods2021;5:e2100765

[87]

Wang B,Wang X,Wang H.Mn3O4 nanotubes encapsulated by porous graphene sheets with enhanced electrochemical properties for lithium/sodium-ion batteries.Chem Eng J2019;364:57-69

[88]

Zhang K,Zhou J,Zhang L.Universal construction of ultrafine metal oxides coupled in N-enriched 3D carbon nanofibers for high-performance lithium/sodium storage.Nano Energy2020;67:104222

[89]

Xu M,Yue J.Rambutan-like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium-ion batteries.Adv Funct Mater2019;29:1807377

[90]

Zhao Y,Wang C.Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries.Nano Energy2019;56:426-33

[91]

Cao L,Zhang B,Zhang J.Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries.ACS Nano2020;14:3610-20

[92]

Liu J,Chen Z.Polyoxometalate cluster-incorporated high entropy oxide sub-1 nm nanowires.J Am Chem Soc2022;144:23191-7

[93]

Yang H,He F.Optimizing the void size of yolk-shell Bi@Void@C nanospheres for high-power-density sodium-ion batteries.Nano Lett2020;20:758-67

[94]

Fan X,Ding Y.3D nanowire arrayed Cu current collector toward homogeneous alloying anode deposition for enhanced sodium storage.Adv Energy Mater2019;9:1900673

[95]

Dang J,Zhang S.Bean pod-like SbSn/N-doped carbon fibers toward a binder free, free-standing, and high-performance anode for sodium-ion batteries.Small2022;18:e2107869

[96]

Song Z,Chen Y,Wen Z.In situ three-dimensional cross-linked carbon nanotube-interspersed SnSb@CNF as freestanding anode for long-term cycling sodium-ion batteries.Chem Eng J2023;463:142289

[97]

Kim YH,Kim SY.Enabling 100C fast-charging bulk Bi anodes for Na-ion batteries.Adv Mater2022;34:e2201446

[98]

Eaves-Rathert J,Wolfe K,Pint CL.Leveraging impurities in recycled lead anodes for sodium-ion batteries.Energy Storage Mater2022;53:552-8

[99]

Fang H,Ren M.Dual-function presodiation with sodium diphenyl ketone towards ultra-stable hard carbon anodes for sodium-ion batteries.Angew Chem Int Ed Engl2023;62:e202214717

[100]

Bai P,He Y.Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries.Energy Storage Mater2020;25:324-33

[101]

Jin Y,Xiao B.Stabilizing interfacial reactions for stable cycling of high-voltage sodium batteries.Adv Funct Mater2022;32:2204995

[102]

Jin Y,Le PML.Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases.ACS Energy Lett2020;5:3212-20

[103]

Li K,Lin D.Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes.Nat Commun2019;10:725 PMCID:PMC6374418

[104]

Meng W,Li D.Long-cycle-life sodium-ion battery fabrication via a unique chemical bonding interface mechanism.Adv Mater2023;35:e2301376

[105]

Xu Z,Park K,Seong WM.Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries.Adv Funct Mater2018;28:1802099

[106]

Cha G,Nguyen NT.Li+ pre-insertion leads to formation of solid electrolyte interface on TiO2 nanotubes that enables high-performance anodes for sodium ion batteries.Adv Energy Mater2020;10:1903448

[107]

Li Q,Cheng H.Electrolyte boosting microdumbbell-structured alloy/metal oxide anode for fast-charging sodium-ion batteries.ACS Mater Lett2022;4:2469-79

[108]

Yang J,Gao H.A high-performance alloy-based anode enabled by surface and interface engineering for wide-temperature sodium-ion batteries.Adv Energy Mater2023;13:2300351

[109]

Chu C,Cheng Y.Ultralow-concentration (0.1M) electrolyte for stable bulk alloy (Sn, Bi) anode in sodium-ion battery via regulating anions structure.Chem Eng J2024;482:148915

[110]

Huang J,Du X.Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries.Energy Environ Sci2019;12:1550-7

[111]

Wu X,Feng W.Insights into electrolyte-induced temporal and spatial evolution of an ultrafast-charging Bi-based anode for sodium-ion batteries.Energy Storage Mater2024;66:103219

[112]

Zhao B,Liu B,Guan B.Hierarchical metal–organic framework nanoarchitectures for catalysis.Chem Synth2024;4:41

[113]

Peng Y,Huang H.Customization of functional MOFs by a modular design strategy for target applications.Chem Synth2022;2:15

[114]

Li H,Wang Y.Selenium confined in ZIF-8 derived porous carbon@MWCNTs 3D networks: tailoring reaction kinetics for high performance lithium-selenium batteries.Chem Synth2022;2:8

[115]

Su Y,Hu J.Recent progress in strategies for preparation of metal-organic frameworks and their hybrids with different dimensions.Chem Synth2022;3:1

[116]

Wang R,Fang Q.Advancements and applications of three-dimensional covalent organic frameworks.Chem Synth2024;4:29

[117]

Li X,Fu S.Molecular engineering toward large pore-sized covalent organic frameworks.Chem Synth2024;4:15

[118]

Yin X,Shi S.Recent progress in advanced organic electrode materials for sodium-ion batteries: synthesis, mechanisms, challenges and perspectives.Adv Funct Mater2020;30:1908445

[119]

Lee J,Park S.Sodium-coordinated polymeric phthalocyanines as stable high-capacity organic anodes for sodium-ion batteries.Energy Environ Mater2023;6:e12468

[120]

Liu Y,Vanaphuti P.Stable fast-charging sodium-ion batteries achieved by a carbomethoxy-modified disodium organic material.Cell Rep Phys Sci2023;4:101240

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/