Porous frameworks for uranium extraction from seawater

Doudou Cao , Suming Zhang , Cheng Zhang , Yajie Yang , Ying-Bo Song , Yue Zheng , Jiarui Cao , Shusen Chen , Yan Song , Fengju Wang , Ye Yuan

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (4) : 77

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (4) :77 DOI: 10.20517/cs.2024.47
Review

Porous frameworks for uranium extraction from seawater

Author information +
History +
PDF

Abstract

The utilization of uranium (U) fission energy as a high-density, clean power source plays a pivotal role in mitigating greenhouse gas emissions. Uranium extraction from seawater exhibits superior environmental friendliness compared to terrestrial uranium mining, as it avoids substantial generation of radioactive waste and harmful chemicals. However, conventional adsorbents such as fiber, polymer, and biomass materials exhibit slow adsorption rates and low ion selectivity. Porous frameworks with large inner surface, full host-guest interaction, and site utilization are utilized to improve uranium absorption performance. Consequently, devising and synthesizing materials that enable efficient and cost-effective extraction of U(VI) from seawater poses a formidable challenge. Recently, there has been a considerable surge in academic interest regarding the synthesis and design of porous frameworks. By integrating experimental data, spectroscopic analysis, and theoretical calculations, we have conducted an extensive investigation into the actual performance, underlying principles, and practicality of conventional materials (such as fibers) and novel porous materials serving as adsorbents, photocatalysts, and electrocatalysts for U(VI) extraction from seawater.

Keywords

Uranium / porous aromatic frameworks (PAFs) / covalent organic frameworks (COFs) / metal-organic frameworks (MOFs) / catalyst

Cite this article

Download citation ▾
Doudou Cao, Suming Zhang, Cheng Zhang, Yajie Yang, Ying-Bo Song, Yue Zheng, Jiarui Cao, Shusen Chen, Yan Song, Fengju Wang, Ye Yuan. Porous frameworks for uranium extraction from seawater. Chemical Synthesis, 2024, 4(4): 77 DOI:10.20517/cs.2024.47

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang XH,Luo XB.Simultaneous photoreduction of Uranium(VI) and photooxidation of Arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation.Appl Catal B Environ2018;228:29-38

[2]

Li P,Peng T.Heterostructure of anatase-rutile aggregates boosting the photoreduction of U(VI).Appl Surf Sci2019;483:670-6

[3]

Li P,Wang Y.Photoconversion of U(VI) by TiO2: an efficient strategy for seawater uranium extraction.Chem Eng J2019;365:231-41

[4]

Abney CW,Saito T.Materials for the recovery of uranium from seawater.Chem Rev2017;117:13935-4013

[5]

Li P,Wang J.Carboxyl groups on g-C3N4 for boosting the photocatalytic U(VI) reduction in the presence of carbonates.Chem Eng J2021;414:128810

[6]

Tatarchuk T,Mironyuk I.A review on removal of uranium(VI) ions using titanium dioxide based sorbents.J Mol Liq2019;293:111563

[7]

Li Y,Yang S.Integration of bio-inspired adsorption and photodegradation for the treatment of organics-containing radioactive wastewater.Chem Eng J2019;364:139-45

[8]

Parsons J,Corradini M.A fresh look at nuclear energy.Science2019;363:105

[9]

Xie Y,Geng Y.Uranium extraction from seawater: material design, emerging technologies and marine engineering.Chem Soc Rev2023;52:97-162

[10]

Kim J,Mayes RT.Recovery of uranium from seawater: a review of current status and future research needs.Sep Sci Technol2013;48:367-87

[11]

Endrizzi F.Chemical speciation of uranium(VI) in marine environments: complexation of calcium and magnesium ions with [(UO2)(CO3)3]4- and the effect on the extraction of uranium from seawater.Chemistry2014;20:14499-506

[12]

Lei J,Zhou L.Progress and perspective in enrichment and separation of radionuclide uranium by biomass functional materials.Chem Eng J2023;471:144586

[13]

Yu CX,Lei M.Fabrication of carboxylate-functionalized 2D MOF nanosheet with caged cavity for efficient and selective extraction of uranium from aqueous solution.Small2024;20:e2308910

[14]

Reeves B,Solari PL.Uranium uptake in Paracentrotus lividus sea urchin, accumulation and speciation.Environ Sci Technol2019;53:7974-83

[15]

Kumar V,Kim K,Younis SA.Metal-organic frameworks for photocatalytic detoxification of chromium and uranium in water.Coordin Chem Rev2021;447:214148

[16]

Chen T,Dong C.Advanced photocatalysts for uranium extraction: elaborate design and future perspectives.Coordin Chem Rev2022;467:214615

[17]

Wang Y,Wei J.Strengthening Fe(II)/Fe(III) dynamic cycling by surface sulfation to achieve efficient electrochemical uranium extraction at ultralow cell voltage.Environ Sci Technol2023;57:13258-66

[18]

Kang J,Chen B.Amide linkages in pyrene-based covalent organic frameworks toward efficient photocatalytic reduction of uranyl.ACS Appl Mater Interfaces2022;14:57225-34

[19]

Niklas JE,Gorden AEV.Solid-state structural elucidation and electrochemical analysis of uranyl naphthylsalophen.Chem Commun2018;54:11693-6

[20]

Schulz H,Schovsbo NH.The Furongian to Lower Ordovician Alum Shale Formation in conventional and unconventional petroleum systems in the Baltic Basin - A review.Earth-Sci Rev2021;218:103674

[21]

Singhal P,Pulhani V.Magnetic nanoparticles for the recovery of uranium from sea water: challenges involved from research to development.J Ind Eng Chem2020;90:17-35

[22]

Sun Y.Application of surface complexation modeling on adsorption of uranium at water-solid interface: a review.Environ Pollut2021;278:116861

[23]

Mazzanti M.Uranium electrocatalysis: the secret is in the ring.Nat Chem2018;10:247-9

[24]

Wang D,Wen J.Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent.Adv Energy Mater2018;8:1802607

[25]

Rostamian R,Irandoust M.Preparation and neutralization of forcespun chitosan nanofibers from shrimp shell waste and study on its uranium adsorption in aqueous media.React Funct Polym2019;143:104335

[26]

Xu X,Ao J.Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber.J Mater Chem A2020;8:22032-44

[27]

Wang Y,Li Q,Cao L.Amidoximated cellulose fiber membrane for uranium extraction from simulated seawater.Carbohydr Polym2020;245:116627

[28]

Ahmad M,Cui Y,Zhang B.Preparation of novel bifunctional magnetic tubular nanofibers and their application in efficient and irreversible uranium trap from aqueous solution.ACS Sustain Chem Eng2020;8:7825-38

[29]

Seko N,Tamada M,Yoshii F.Fine fibrous amidoxime adsorbent synthesized by grafting and uranium adsorption–elution cyclic test with seawater.Sep Sci Technol2004;39:3753-67

[30]

Gupta NK,Gupta A,Sahoo H.Biosorption-an alternative method for nuclear waste management: a critical review.J Environ Chem Eng2018;6:2159-75

[31]

Kavakli PA,Tamada M.A highly efficient chelating polymer for the adsorption of uranyl and vanadyl ions at low concentrations.Adsorption2005;10:309-15

[32]

Anirudhan TS,Shainy F.Synthesis and characterization of amidoxime modified chitosan/bentonite composite for the adsorptive removal and recovery of uranium from seawater.J Colloid Interface Sci2019;534:248-61

[33]

Muzzarelli RA.Potential of chitin/chitosan-bearing materials for uranium recovery: an interdisciplinary review.Carbohydr Polym2011;84:54-63

[34]

Tian G,Jin Y.Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5.J Hazard Mater2011;190:442-50

[35]

Zhao S,Yu Q.A dual-surface amidoximated halloysite nanotube for high-efficiency economical uranium extraction from seawater.Angew Chem Int Ed Engl2019;58:14979-85

[36]

Hua Y,Brown RJC.Recent advances in the synthesis of and sensing applications for metal-organic framework-molecularly imprinted polymer (MOF-MIP) composites.Crit Rev Env Sci Tec2023;53:258-89

[37]

Li H,O’Keeffe M.Design and synthesis of an exceptionally stable and highly porous metal-organic framework.Nature1999;402:276-9

[38]

Wang Y,Xiong D.Metal chloride functionalized MOF-253(Al) for high-efficiency selective separation of ammonia from H2 and N2.Chem Eng J2023;474:145307

[39]

Yip YJ,Lee SSC,Teo SL.Transfer of poly(methyl methacrylate) nanoparticles from parents to offspring and the protection mechanism in two marine invertebrates.ACS Sustain Chem Eng2022;10:37-49

[40]

Su S,Liu Q.Zeolitic imidazolate framework-67: a promising candidate for recovery of uranium (VI) from seawater.Colloid Surface A2018;547:73-80

[41]

De Decker J,De Clercq J.Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption.J Hazard Mater2017;335:1-9

[42]

Zhang L,Gong le L,Luo MB.Coumarin-modified microporous-mesoporous Zn-MOF-74 showing ultra-high uptake capacity and photo-switched storage/release of U(VI) ions.J Hazard Mater2016;311:30-6

[43]

Li L,Shen S,Bai Y.A combined experimental and theoretical study on the extraction of uranium by amino-derived metal-organic frameworks through post-synthetic strategy.ACS Appl Mater Interfaces2016;8:31032-41

[44]

Carboni M,Liu S.Highly porous and stable metal–organic frameworks for uranium extraction.Chem Sci2013;4:2396

[45]

Chen L,Zhu L.Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework.ACS Appl Mater Interfaces2017;9:32446-51

[46]

Yang W,Shi WQ.MOF-76: from a luminescent probe to highly efficient U(VI) sorption material.Chem Commun2013;49:10415-7

[47]

Wu Y,Wang X.Magnetic metal-organic frameworks (Fe3O4@ZIF-8) composites for U(VI) and Eu(III) elimination: simultaneously achieve favorable stability and functionality.Chem Eng J2019;378:122105

[48]

Bai C,Li B.Three novel triazine-based materials with different O/S/N set of donor atoms: one-step preparation and comparison of their capability in selective separation of uranium.J Hazard Mater2015;300:368-77

[49]

Zhang S,Li B.“Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: design, synthesis and selective sorption towards uranium at high acidic condition.J Hazard Mater2016;314:95-104

[50]

Xiong XH,Gong LL.Ammoniating covalent organic framework (COF) for high-performance and selective extraction of toxic and radioactive uranium ions.Adv Sci2019;6:1900547 PMCID:PMC6702651

[51]

Zhang M,Bai C.Synthesis of microporous covalent phosphazene-based frameworks for selective separation of uranium in highly acidic media based on size-matching effect.ACS Appl Mater Interfaces2018;10:28936-47

[52]

Zhang J,Jia Z.Construction of covalent organic framework with unique double-ring pore for size-matching adsorption of uranium.Nanoscale2020;12:24044-53

[53]

Guo R,Huo Y,Hong J.Chelating effect between uranyl and pyridine N containing covalent organic frameworks: a combined experimental and DFT approach.J Colloid Interface Sci2022;606:1617-26

[54]

Yu J,Wang S.Phosphonate-decorated covalent organic frameworks for actinide extraction: a breakthrough under highly acidic conditions.CCS Chem2019;1:286-95

[55]

Li J,Bai C.A novel benzimidazole-functionalized 2-D COF material: synthesis and application as a selective solid-phase extractant for separation of uranium.J Colloid Interface Sci2015;437:211-8

[56]

Li B,Zhang Y.Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions.ACS Appl Mater Interfaces2017;9:12511-7

[57]

Aguila B,Cassady H,Li B.Design strategies to enhance amidoxime chelators for uranium recovery.ACS Appl Mater Interfaces2019;11:30919-26

[58]

Sun Q,Perman J.Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste.Nat Commun2018;9:1644 PMCID:PMC5915388

[59]

Li Z,Yang Y,Yuan Y.Constructing amidoxime-modified porous adsorbents with open architecture for cost-effective and efficient uranium extraction.Chem Sci2020;11:4747-52 PMCID:PMC8159166

[60]

Shen Y,Yang S,Cao H.Quaternary phosphonium-grafted porous aromatic framework for preferential uranium adsorption in alkaline solution.Ind Eng Chem Res2019;58:18329-35

[61]

Yuan Y,Ma X.Molecularly imprinted porous aromatic frameworks and their composite components for selective extraction of uranium ions.Adv Mater2018;30:e1706507

[62]

Yuan Y,Faheem M.A molecular coordination template strategy for designing selective porous aromatic framework materials for uranyl capture.ACS Cent Sci2019;5:1432-9 PMCID:PMC6716130

[63]

Dai Z,Lian J,Ding D.Efficient visible-light-driven photoreduction of U(VI) by carbon dots modified porous g-C3N4.Sep Purif Technol2022;298:121590

[64]

Zhong X,Zeng W,Hu B.Excellent photoreduction performance of U(VI) on metal organic framework/covalent organic framework heterojunction by solar-driven.Sep Purif Technol2022;285:120405

[65]

Xu R,Zhang C.Vinylene-linked covalent organic frameworks with enhanced uranium adsorption through three synergistic mechanisms.Chem Eng J2021;419:129550

[66]

Li ZJ,Guo WL.Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite.Environ Sci Technol2017;51:5666-74

[67]

Wu F,Cheng Z.The enhanced photocatalytic reduction of uranium(VI) by ZnS@g-C3N4 heterojunctions under sunlight.J Radioanal Nucl Chem2021;329:1125-33

[68]

Salomone VN,Schinelli G,Litter MI.Photochemical reduction of U(VI) in aqueous solution in the presence of 2-propanol.J Photoch Photobio A2014;277:19-26

[69]

Wang G,Zhou L,Deng N.Adsorption and photocatalytic reduction of U(VI) in aqueous TiO2 suspensions enhanced with sodium formate.J Radioanal Nucl Chem2015;304:579-85

[70]

Liu N,Zhu J.Z-scheme heterojunction ZnS/WO3 composite: photocatalytic reduction of uranium and band gap regulation mechanism.J Colloid Interface Sci2023;630:727-37

[71]

Liu C,Xie J.A half-wave rectified alternating current electrochemical method for uranium extraction from seawater.Nat Energy2017;2:17007

[72]

Yang H,Hao M.Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater.Adv Mater2021;33:e2106621

[73]

Liu X,Hao M.Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst.Adv Sci2022;9:e2201735 PMCID:PMC9376814

[74]

Wang LL,Dang LL.Ultrafast high-performance extraction of uranium from seawater without pretreatment using an acylamide- and carboxyl-functionalized metal–organic framework.J Mater Chem A2015;3:13724-30

[75]

Li JQ,Feng XF.Direct extraction of U(VI) from alkaline solution and seawater via anion exchange by metal-organic framework.Chem Eng J2017;316:154-9

[76]

Song Y,Sun Q.Nanospace decoration with uranyl-specific “Hooks” for selective uranium extraction from seawater with ultrahigh enrichment index.ACS Cent Sci2021;7:1650-6 PMCID:PMC8554845

[77]

Ismail AF.Investigation of activated carbon adsorbent electrode for electrosorption-based uranium extraction from seawater.Nucl Eng Technol2015;47:579-87

[78]

Sun Q,Aguila B,Bryantsev VS.Spatial engineering direct cooperativity between binding sites for uranium sequestration.Adv Sci2021;8:2001573 PMCID:PMC7816700

[79]

Cui W,Liang R.Covalent organic framework hydrogels for synergistic seawater desalination and uranium extraction.J Mater Chem A2021;9:25611-20

[80]

Guo X,Liu Q.Graphene oxide and silver ions coassisted zeolitic imidazolate framework for antifouling and uranium enrichment from seawater.ACS Sustain Chem Eng2019;7:6185-95

[81]

Cheng G,Zhao Z.Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity.Sci Bull2021;66:1994-2001

[82]

Zhang C,Niu C.rGO-based covalent organic framework hydrogel for synergistically enhance uranium capture capacity through photothermal desalination.Chem Eng J2022;428:131178

[83]

Ma L,Huang C.UiO-66-NH-(AO) MOFs with a new ligand BDC-NH-(CN) for efficient extraction of uranium from seawater.ACS Appl Mater Interfaces2021;13:57831-40

[84]

Cui W,Xu R.High-efficiency photoenhanced extraction of uranium from natural seawater by olefin-linked covalent organic frameworks.ACS EST Water2021;1:440-8

[85]

Wang D,Lin S.A marine-inspired hybrid sponge for highly efficient uranium extraction from seawater.Adv Funct Mater2019;29:1901009

[86]

Zhang CR,Xu RH.Alkynyl-based sp2 carbon-conjugated covalent organic frameworks with enhanced uranium extraction from seawater by photoinduced multiple effects.CCS Chem2021;3:168-79

[87]

Yuan Y,Xiao J.DNA nano-pocket for ultra-selective uranyl extraction from seawater.Nat Commun2020;11:5708 PMCID:PMC7659010

[88]

Cui WR,Xu RH.Regenerable covalent organic frameworks for photo-enhanced uranium adsorption from seawater.Angew Chem Int Ed Engl2020;59:17684-90

[89]

Wu Y,Zhang C,Qiu J.Regenerable, anti-biofouling covalent organic frameworks for monitoring and extraction of uranium from seawater.Environ Chem Lett2021;19:1847-56

[90]

Yuan Y,Cao M.Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide.Nat Sustain2021;4:708-14

[91]

Feng L,Feng T.In situ synthesis of uranyl-imprinted nanocage for selective uranium recovery from seawater.Angew Chem Int Ed Engl2022;61:e202101015

[92]

Xu X,Cai D.Aqueous solution blow spinning of seawater-stable polyamidoxime nanofibers from water-soluble precursor for uranium extraction from seawater.Small Methods2020;4:2000558

[93]

Yang L,Qian Y.Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater.Nat Sustain2022;5:71-80

[94]

Yan B,Gao J,Wang N.An ion-crosslinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater.Adv Mater2020;32:e1906615

[95]

Shi S,Mei P.Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater.Nano Energy2020;71:104629

[96]

Yuan Y,Wen J.Rational design of porous nanofiber adsorbent by blow-spinning with ultrahigh uranium recovery capacity from seawater.Adv Funct Mater2019;29:1805380

[97]

Wei H,Hu N,Wei L.The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity.Chem Commun2015;51:12178-81

[98]

Cui WR,Xu RH.Low band gap benzoxazole-linked covalent organic frameworks for photo-enhanced targeted uranium recovery.Small2021;17:e2006882

[99]

Yuan Y,Yu Q.Photoinduced multiple effects to enhance uranium extraction from natural seawater by black phosphorus nanosheets.Angew Chem Int Ed Engl2020;59:1220-7

[100]

Yuan Y,Wen J.Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber.Angew Chem Int Ed Engl2019;58:11785-90

[101]

Wang Z,Ma R.Constructing an ion pathway for uranium extraction from seawater.Chem2020;6:1683-91

[102]

Wang Z,Meng Q.Constructing uranyl-specific nanofluidic channels for unipolar ionic transport to realize ultrafast uranium extraction.J Am Chem Soc2021;143:14523-9

[103]

Sun Q,Earl LD.Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration.Adv Mater2018;30:e1705479

[104]

Luo W,Tian F.Engineering robust metal–phenolic network membranes for uranium extraction from seawater.Energy Environ Sci2019;12:607-14

[105]

Yu Q,Wen J.A universally applicable strategy for construction of anti-biofouling adsorbents for enhanced uranium recovery from seawater.Adv Sci2019;6:1900002 PMCID:PMC6662298

[106]

Cui WR,Liang RP,Qiu JD.Covalent organic framework sponges for efficient solar desalination and selective uranium recovery.ACS Appl Mater Interfaces2021;13:31561-8

[107]

Bai Z,Zhang H.Anti-biofouling and water-stable balanced charged metal organic framework-based polyelectrolyte hydrogels for extracting uranium from seawater.ACS Appl Mater Interfaces2020;12:18012-22

[108]

Chen Z,Hao M.Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance.Nat Commun2023;14:1106 PMCID:PMC9970987

[109]

Yang H,Xie Y.Tuning local charge distribution in multicomponent covalent organic frameworks for dramatically enhanced photocatalytic uranium extraction.Angew Chem Int Ed Engl2023;62:e202303129

[110]

Li M,Yu Y.Recent advances in Zn-MOFs and their derivatives for cancer therapeutic applications.Mater Adv2023;4:5050-93

[111]

Zhong Y,Peng Y.Construction of Fe-doped ZIF-8/DOX nanocomposites for ferroptosis strategy in the treatment of breast cancer.J Mater Chem B2023;11:6335-45

[112]

Chen D,Jing X,Zhu G.Bio-inspired functionalization of electrospun nanofibers with anti-biofouling property for efficient uranium extraction from seawater.Chem Eng J2023;465:142844

[113]

Xu X,Ao J.3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater.Energy Environ Sci2019;12:1979-88

[114]

Kuo L,Wai CM.Investigations into the reusability of amidoxime-based polymeric adsorbents for seawater uranium extraction.Ind Eng Chem Res2017;56:11603-11

[115]

Das S,Flicker Byers M.Alternative alkaline conditioning of amidoxime based adsorbent for uranium extraction from seawater.Ind Eng Chem Res2016;55:4303-12

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/