Maximized Ir atom utilization via downsizing active sites to single-atom scale for highly stable dry reforming of methane

Yangyang Li , Cun Liu , Yang Su , Yang Zhao , Botao Qiao

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (1) : 8

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (1) :8 DOI: 10.20517/cs.2024.44
review-article

Maximized Ir atom utilization via downsizing active sites to single-atom scale for highly stable dry reforming of methane

Author information +
History +
PDF

Abstract

Noble metals such as iridium with high Tammann temperature are inclined to sintering resistance and may be promising in the high-temperature dry reforming of methane (DRM) process, yet the low atom utilization remains intractable. Herein, we synthesized Ir/TiO2 catalysts via the conventional incipient wetness impregnation method and further downsized the Ir species from a nanoparticulate to a single-atom scale by gradually decreasing Ir loadings from 1.0 wt.% to 0.01 wt.%. With the advantage of single atoms for maximized atom utilization, Ir single atoms were employed to enhance atom utilization in the DRM process. Various characterizations, such as aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, CO adsorbed in situ diffuse reflectance infrared Fourier transform spectra and X-ray absorption spectra demonstrated the existence of Ir single atoms in 0.01% and 0.05% Ir/TiO2. During the DRM process, Ir single-atom catalysts exhibited a better specific reaction rate of as high as 697.71 molCH4·gIr-1·h-1 at 750 °C compared with that over Ir nanoparticles of mere 447.12 molCH4·gIr-1·h-1, which unambiguously showed the remarkable Ir atom utilization over Ir single atoms. Besides, the Ir single-atom catalysts also exhibited excellent stability during the DRM process for 50 h and revealed outstanding anti-coking and good sintering-resistance properties examined by the thermal gravimetric analysis-mass spectrometer and Raman spectroscopy. The strategy of employing Ir single atoms for the maximum atom utilization in the high-temperature reaction process can pave the way for better exploitation of noble metals in other industrial reaction processes.

Keywords

Single-atom catalysts / dry reforming of methane / atom utilization / specific reaction rate / iridium

Cite this article

Download citation ▾
Yangyang Li, Cun Liu, Yang Su, Yang Zhao, Botao Qiao. Maximized Ir atom utilization via downsizing active sites to single-atom scale for highly stable dry reforming of methane. Chemical Synthesis, 2025, 5(1): 8 DOI:10.20517/cs.2024.44

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Han B,Jiang X.Switchable tuning CO2 hydrogenation selectivity by encapsulation of the Rh nanoparticles while exposing single atoms.Small2022;18:e2204490

[2]

He D,Cao X.Dynamic trap of Ni at elevated temperature for yielding high-efficiency methane dry reforming catalyst.Appl Catal B Environ Energy2024;346:123728

[3]

Zhou W,Tang L.Photocatalytic dry reforming of methane enhanced by “dual-path” strategy with excellent low-temperature catalytic performance.Adv Funct Mater2023;33:2214068

[4]

Xu Y,Wu M.Review on using molybdenum carbides for the thermal catalysis of CO2 hydrogenation to produce high-value-added chemicals and fuels.Acta Phys Chim Sin2024;40:2304003

[5]

Kawi S,Ni J,Li Z.Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane.ChemSusChem2015;8:3556-75

[6]

Kathiraser Y,Saw ET,Kawi S.Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts.Chem Eng J2015;278:62-78

[7]

Yentekakis IV,Artemakis G.A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations.Appl Catal B Environ2021;296:120210

[8]

Wittich K,Bottke N.Catalytic dry reforming of methane: insights from model systems.ChemCatChem2020;12:2130-47

[9]

Wang Z,Huan Y.Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction.Chin J Catal2024;57:1-17

[10]

Li T,Lang R.Styrene hydroformylation with in situ hydrogen: regioselectivity control by coupling with the low-temperature water-gas shift reaction.Angew Chem Int Ed Engl2020;59:7430-4

[11]

Chen F,Pan X.Pd1/CeO2 single-atom catalyst for alkoxycarbonylation of aryl iodides.Sci China Mater2020;63:959-64. (in Chinese)

[12]

Zhang Y,Yang X.Tuning reactivity of Fischer-Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts.Nat Commun2020;11:3185 PMCID:PMC7314765

[13]

Rahmati M,Fletcher TH,Bartholomew CH.Chemical and thermal sintering of supported metals with emphasis on cobalt catalysts during fischer-tropsch synthesis.Chem Rev2020;120:4455-533

[14]

Chu W,Chernavskii PA.Glow-discharge plasma-assisted design of cobalt catalysts for Fischer-Tropsch synthesis.Angew Chem Int Ed Engl2008;47:5052-5

[15]

Zhang Q,Yang Y.Atomically dispersed metals as potential coke-resistant catalysts for dry reforming of methane.Cell Rep Phys Sci2023;4:101310

[16]

Cheng Q,Ou L.Highly efficient and stable methane dry reforming enabled by a single-site cationic Ni catalyst.J Am Chem Soc2023;145:25109-19

[17]

Zhang X,Liu Y.A novel Ni-MoCxOy interfacial catalyst for syngas production via the chemical looping dry reforming of methane.Chem2023;9:102-16

[18]

Feng K,Li Z.Spontaneous regeneration of active sites against catalyst deactivation.Appl Catal B Environ2024;344:123647

[19]

Tang Y,Wang Z.Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4.J Am Chem Soc2019;141:7283-93

[20]

Carrara C,Lombardo EA.Kinetic and stability studies of Ru/La2O3 used in the dry reforming of methane.Top Catal2008;51:98-106

[21]

Niu J,E .Liland S, et al. Unraveling enhanced activity, selectivity, and coke resistance of Pt-Ni bimetallic clusters in dry reforming.ACS Catal2021;11:2398-411

[22]

Al-Fatesh AS,Abasaeed AE.Effect of Pd on CH4 reforming with CO2 catalyzed by Ni over mixed Titian-Alumina support.Adv Mater Res2012;476-8:513-8.

[23]

Wang D,Marks TJ,Weitz E.Coking can enhance product yields in the dry reforming of methane.ACS Catal2022;12:8352-62

[24]

Jang WJ,Kim HM,Roh HS.A review on dry reforming of methane in aspect of catalytic properties.Catal Today2019;324:15-26

[25]

Pakhare D.A review of dry (CO2) reforming of methane over noble metal catalysts.Chem Soc Rev2014;43:7813-37

[26]

Golunski SE.Final analysis: Why use platinum in catalytic converters?.Platin Met Rev2007;51:162

[27]

Li H,Tian J,Zhao C.Ultra-durable Ni-Ir/MgAl2O4 catalysts for dry reforming of methane enabled by dynamic balance between carbon deposition and elimination.Chem Catal2022;2:1748-63

[28]

Huang Y,Zhang Q,Huang W.Enhanced carbon tolerance of hydrotalcite-derived Ni-Ir/Mg(Al)O catalysts in dry reforming of methane under elevated pressures.Fuel Process Technol2022;237:107446

[29]

Zhou R,Zhang J.Photo-thermo catalytic dry reforming of methane over Ni-Ir/SiO2 catalyst.Sci Sin Chim2021;51:1539-48

[30]

Nikolaraki E,Panagiotopoulou P.Support induced effects on the Ir nanoparticles activity, selectivity and stability performance under CO2 reforming of methane.Nanomaterials2021;11:2880 PMCID:PMC8624188

[31]

Kim E,Bak J.Stabilizing role of Mo in TiO2-MoOx supported Ir catalyst toward oxygen evolution reaction.Appl Catal B Environ2021;280:119433

[32]

Maina SCP,Vilella JI.Study of the performance and stability in the dry reforming of methane of doped alumina supported iridium catalysts.Catal Today2020;344:129-42

[33]

Jia A,Song T.The effects of TiO2 crystal-plane-dependent Ir-TiOx interactions on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts.Chin J Catal2021;42:1742-54

[34]

Hou CC,Sun L.Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction.Angew Chem Int Ed Engl2020;59:7384-9

[35]

Lang R,Huang Y.Single-atom catalysts based on the metal-oxide interaction.Chem Rev2020;120:11986-2043

[36]

Li L,Lin X,Gong J.Theoretical insights into single-atom catalysts.Chem Soc Rev2020;49:8156-78

[37]

Wang Y,He Y.Advanced electrocatalysts with single-metal-atom active sites.Chem Rev2020;120:12217-314

[38]

Kim JH,Kim J.Reversible ligand exchange in atomically dispersed catalysts for modulating the activity and selectivity of the oxygen reduction reaction.Angew Chem Int Ed Engl2021;60:20528-34

[39]

Jeong H,Kim B.Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts.Nat Catal2020;3:368-75

[40]

Zhu R,Li L.Photo-thermo catalytic oxidation of C3H8 and C3H6 over the WO3-TiO2 supported Pt single-atom catalyst.Acta Physico Chimica Sinica2024;40:2303003

[41]

Zhou Y,Qi H.Peripheral-nitrogen effects on the Ru1 centre for highly efficient propane dehydrogenation.Nat Catal2022;5:1145-56

[42]

Han B,Zhang J.A highly active Rh1/CeO2 single-atom catalyst for low-temperature CO oxidation.Chem Commun2020;56:4870-3

[43]

Akri M,Batiot-dupeyrat C.Highly active and carbon-resistant nickel single-atom catalysts for methane dry reforming.Catalysts2020;10:630

[44]

Akri M,Li X.Atomically dispersed nickel as coke-resistant active sites for methane dry reforming.Nat Commun2019;10:5181 PMCID:PMC6858327

[45]

Yang J,Jiang Q.Highly active and stable Ir nanoclusters derived from Ir1/MgAl2O4 single-atom catalysts.J Chem Phys2021;154:131105

[46]

Bergeret G.3.1.2 Particle size and dispersion measurements. In: Ertl G, Knözinger H, Schüth F, Weitkamp J, editors. Handbook of heterogeneous catalysis. Wiley; 2008. pp. 738-65.

[47]

Peng M,Gao R,Liu H.Fully exposed cluster catalyst (FECC): toward rich surface sites and full atom utilization efficiency.ACS Cent Sci2021;7:262-73 PMCID:PMC7908029

[48]

Yang XF,Qiao B,Liu J.Single-atom catalysts: a new frontier in heterogeneous catalysis.Acc Chem Res2013;46:1740-8

[49]

Lu Y,Yu L.Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts.Nat Catal2019;2:149-56

[50]

Jin R,Li A.Low temperature oxidation of ethane to oxygenates by oxygen over iridium-cluster catalysts.J Am Chem Soc2019;141:18921-5

[51]

Zhu Q,Wang L.Enhanced CO2 utilization in dry reforming of methane achieved through nickel-mediated hydrogen spillover in zeolite crystals.Nat Catal2022;5:1030-7

[52]

Zhang Y,Yang X.Tuning selectivity of CO2 hydrogenation by modulating the strong metal-support interaction over Ir/TiO2 catalysts.Green Chem2020;22:6855-61

[53]

Wang A,Zhang T.Heterogeneous single-atom catalysis.Nat Rev Chem2018;2:65-81

[54]

Zuo Z,Wang Z.Dry reforming of methane on single-site Ni/MgO catalysts: importance of site confinement.ACS Catal2018;8:9821-35

[55]

Gangarajula Y,Li Q.Operando induced strong metal-support interaction of Rh/CeO2 catalyst in dry reforming of methane.Appl Catal B Environ2024;343:123503

[56]

Zhang Q,Su Y,Qiao B.Catalytic propane dehydrogenation by anatase supported Ni single-atom catalysts.Chin J Catal2024;57:105-13

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/