Hierarchical metal–organic framework nanoarchitectures for catalysis

Bin Zhao , Ji Han , Bohan Liu , Song Lin Zhang , Buyuan Guan

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (3) : 41

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (3) :41 DOI: 10.20517/cs.2024.42
review-article

Hierarchical metal–organic framework nanoarchitectures for catalysis

Author information +
History +
PDF

Abstract

Metal–organic frameworks (MOFs) have garnered significant attention in the field of catalysis due to their unique advantages such as diverse coordination geometry, variable metal nodes, and organic linkers, facilitating precise structural and compositional control for achieving programmable catalytic functionalities. Although their inherent microporous structure could provide excellent shape selectivity during catalysis, it typically impedes the mass transfer process, thereby reducing the use of internal active sites and overall catalytic efficiency. Additionally, employing single MOFs as catalysts presents challenges in achieving complex catalytic reactions that require multifunctional active sites. In recent years, considerable research efforts have focused on designing and constructing hierarchical nanostructured MOFs to alleviate substrate diffusion limitations by introducing secondary nanopores, shortening diffusion distances via the construction of low-dimensional nanoarchitectures, and constructing multifunctional catalysts by integrating distinct MOFs with suitable functions. This review provides a comprehensive overview of the design, synthesis methods, and formation mechanisms of MOF-based hierarchical nanostructures in recent years. Subsequently, it further highlights their applications in thermal catalysis, electrocatalysis, and photocatalysis, along with the relationship between their hierarchical nanostructures and catalytic performances. Finally, it provides an outlook on the challenges and potential development directions of hierarchically structured MOF nanocatalysts.

Keywords

Metal–organic frameworks / hierarchical nanoarchitectures / thermal catalysis / electrocatalysis / photocatalysis

Cite this article

Download citation ▾
Bin Zhao, Ji Han, Bohan Liu, Song Lin Zhang, Buyuan Guan. Hierarchical metal–organic framework nanoarchitectures for catalysis. Chemical Synthesis, 2024, 4(3): 41 DOI:10.20517/cs.2024.42

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Deng H,Furukawa H.Multiple functional groups of varying ratios in metal-organic frameworks.Science2010;327:846-50

[2]

Li H,O’keeffe M.Design and synthesis of an exceptionally stable and highly porous metal-organic framework.Nature1999;402:276-9

[3]

Furukawa H,O’Keeffe M.The chemistry and applications of metal-organic frameworks.Science2013;341:1230444

[4]

Bavykina A,Khan IS,Ramirez A.Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives.Chem Rev2020;120:8468-535

[5]

Chen L.Metal-organic framework composites for catalysis.Matter2019;1:57-89

[6]

Corma A,Llabrés i Xamena FX.Engineering metal organic frameworks for heterogeneous catalysis.Chem Rev2010;110:4606-55

[7]

Pascanu V,Inge AK.Metal-organic frameworks as catalysts for organic synthesis: a critical perspective.J Am Chem Soc2019;141:7223-34

[8]

Lu W,Gu ZY.Tuning the structure and function of metal-organic frameworks via linker design.Chem Soc Rev2014;43:5561-93

[9]

Cai G,Zhang L,Jiang HL.Metal-organic framework-based hierarchically porous materials: synthesis and applications.Chem Rev2021;121:12278-326

[10]

Chai L,Hu Y,Hong M.Rational design and growth of MOF-on-MOF heterostructures.Small2021;17:e2100607

[11]

Zhao Z,Zhu R.The synthesis and electrochemical applications of core–shell MOFs and their derivatives.J Mater Chem A2019;7:15519-40

[12]

Xiao X,Pang H.Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications.Chem Soc Rev2020;49:301-31

[13]

Feng L,Powell J.Controllable synthesis of metal-organic frameworks and their hierarchical assemblies.Matter2019;1:801-24

[14]

Khan NA,Jhung SH.Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs.Coord Chem Rev2018;376:20-45

[15]

Chen L,Li Y.Controllable design of tunable nanostructures inside metal-organic frameworks.Chem Soc Rev2017;46:4614-30

[16]

Shen Y,Wang L,Zhang W.Programmable logic in metal-organic frameworks for catalysis.Adv Mater2021;33:e2007442

[17]

Guan BY,Wu HB.Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion.Adv Mater2017;29:1703614

[18]

Qiu LG,Li ZQ.Hierarchically micro- and mesoporous metal-organic frameworks with tunable porosity.Angew Chem Int Ed Engl2008;47:9487-91

[19]

Li W,Zhao D.Mesoporous materials for energy conversion and storage devices.Nat Rev Mater2016;1:16023

[20]

Wu Z,Xia Y,Zhao D.Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst.J Am Chem Soc2012;134:2236-45

[21]

Xu X,Wang X.Well-defined metal-organic-framework hollow nanostructures for catalytic reactions involving gases.Adv Mater2015;27:5365-71

[22]

Xu H,Zhao B.A facile dual-template-directed successive assembly approach to hollow multi-shell mesoporous metal-organic framework particles.Nat Commun2023;14:8062 PMCID:PMC10698178

[23]

Dai S,Serre C.Recent progresses in metal–organic frameworks based core–shell composites.Adv Energy Mater2022;12:2100061

[24]

Feng L,Lv XL,Zhou HC.Hierarchically porous metal-organic frameworks: synthetic strategies and applications.Natl Sci Rev2020;7:1743-58 PMCID:PMC8290954

[25]

He HH,Cai PY.Yolk-shell and hollow Zr/Ce-UiO-66 for manipulating selectivity in tandem reactions and photoreactions.J Am Chem Soc2023;145:17164-75

[26]

Zhao S,Dong J.Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution.Nat Energy2016;1:16184

[27]

Dhakshinamoorthy A,Garcia H.2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis.Adv Mater2019;31:e1900617

[28]

He T,Zhang S.Ultrathin 2D zirconium metal-organic framework nanosheets: preparation and application in photocatalysis.Small2018;14:e1703929

[29]

Liu W,Xu X,Shi W.Structural engineering of low-dimensional metal-organic frameworks: synthesis, properties, and applications.Adv Sci2019;6:1802373 PMCID:PMC6662104

[30]

Saad A,Gkaniatsou E.Metal–organic framework based 1D nanostructures and their superstructures: synthesis, microstructure, and properties.Chem Mater2021;33:5825-49

[31]

Wang J,Chen J,Fang X.Flexible 2D Cu metal: organic framework@MXene film electrode with excellent durability for highly selective electrocatalytic NH3 synthesis.Research2022;2022:9837012 PMCID:PMC9175116

[32]

Han J,Zhao B.“Hard” emulsion-induced interface super-assembly: a general strategy for two-dimensional hierarchically porous metal–organic framework nanoarchitectures. J Am Chem Soc 2024;146:18979-88.

[33]

Furukawa S,Nakagawa K.Heterogeneously hybridized porous coordination polymer crystals: fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship.Angew Chem Int Ed Engl2009;48:1766-70

[34]

Li T,Rosi NL.Design and preparation of a core-shell metal-organic framework for selective CO2 capture.J Am Chem Soc2013;135:9984-7

[35]

Haldar R.Hierarchical assemblies of molecular frameworks - MOF-on-MOF epitaxial heterostructures.Nano Res2021;14:355-68

[36]

Chai H,Zhao Y.MOF-On-MOF dual enzyme-mimic nanozyme with enhanced cascade catalysis for colorimetric/chemiluminescent dual-mode aptasensing.Anal Chem2023;95:10785-94

[37]

Qin Y,Duan Y,Zhao M.Nanostructural engineering of metal-organic frameworks: construction strategies and catalytic applications.Matter2022;5:3260-310

[38]

Zhao M,Peng Y,Ma Q.Two-dimensional metal-organic framework nanosheets: synthesis and applications.Chem Soc Rev2018;47:6267-95

[39]

Cirujano FG,Wee LH.Design of hierarchical architectures in metal–oganic frameworks for catalysis and adsorption.Chem Mater2020;32:10268-95

[40]

Qiao J,Zhang L.Self-assembly of 3p-block metal-based metal-organic frameworks from structural perspective.Chem Res Chin Univ2022;38:31-44

[41]

Zhang J,Jin N.Chemo-biocascade reactions enabled by metal-organic framework micro-nanoreactor.Research2022;2022:9847698 PMCID:PMC9414180

[42]

Xu X,Chen HC.Metal-organic frameworks offering tunable binary active sites toward highly efficient urea oxidation electrolysis.Research2022;2022:9837109 PMCID:PMC9275073

[43]

Zheng HQ,Lu M.Precise design and deliberate tuning of turn-on fluorescence in tetraphenylpyrazine-based metal-organic frameworks.Research2022;2022:9869510 PMCID:PMC9609278

[44]

Li K,Gu J.Hierarchically porous MOFs synthesized by soft-template strategies.Acc Chem Res2022;55:2235-47

[45]

Shen K,Chen X.Ordered macro-microporous metal-organic framework single crystals.Science2018;359:206-10

[46]

Wei Y,Wang H,Xu Q.Micro/nano-scaled metal-organic frameworks and their derivatives for energy applications.Adv Energy Mater2022;12:2003970

[47]

Han X,Wang X.Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules.Nat Commun2022;13:2900 PMCID:PMC9130124

[48]

Zhou X,Xia BY,Zheng Y.Molecular cleavage of metal-organic frameworks and application to energy storage and conversion.Adv Mater2021;33:e2104341

[49]

Li K,Huang R,Gu J.Ordered large-pore mesoMOFs based on synergistic effects of triblock polymer and hofmeister ion.Angew Chem Int Ed Engl2020;59:14124-8

[50]

Li C,Kaneti YV,Yamauchi Y.Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems.Chem Soc Rev2020;49:4681-736

[51]

Liu M.Macro-/mesoporous metal–organic frameworks templated by amphiphilic block copolymers enable enhanced uptake of large molecules.Adv Funct Mater2023;33:2214262

[52]

Chen J,Yang J.Hierarchical large-pore MOFs templated from poly(ethylene oxide)-b-polystyrene diblock copolymer with tuneable pore sizes.Chem Commun2022;58:10028-31

[53]

You Y,Ai Y.Diblock copolymers directing construction of hierarchically porous metal-organic frameworks for enhanced-performance supercapacitors.Nanotechnology2021;32:165601

[54]

Yang J,Gu J.Hierarchically macro-microporous Ce-based MOFs for the cleavage of DNA.ACS Mater Lett2022;4:385-91

[55]

Li K,Li Y,Gu J.Aqueous-phase synthesis of mesoporous Zr-based MOFs templated by amphoteric surfactants.Angew Chem Int Ed Engl2018;57:3439-43

[56]

Li K,Yang J.Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes.Nat Commun2022;13:1879 PMCID:PMC8986779

[57]

Wu T,Han J.Construction of three-dimensional dendritic hierarchically porous metal-organic framework nanoarchitectures via noncentrosymmetric pore-induced anisotropic assembly.J Am Chem Soc2023;145:16498-507

[58]

Wang C,Wang Y.A general strategy for the synthesis of hierarchically ordered metal-organic frameworks with tunable macro-, meso-, and micro-pores.Small2023;19:e2206116

[59]

Yang Q,Lin CH.Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion.Angew Chem Int Ed Engl2019;58:3511-5

[60]

Li C,Xiao T.Metal organic framework cubosomes.Angew Chem Int Ed Engl2023;62:e202215985

[61]

Li Q,Wu J.Fabrication of ordered macro-microporous single-crystalline MOF and its derivative carbon material for supercapacitor.Adv Energy Mater2020;10:1903750

[62]

Hong H,Huang H.Ordered macro-microporous metal-organic framework single crystals and their derivatives for rechargeable aluminum-ion batteries.J Am Chem Soc2019;141:14764-71

[63]

Song Y,Wang X.Two-dimensional metal-organic framework superstructures from ice-templated self-assembly.J Am Chem Soc2022;144:17457-67

[64]

Li Z,Meng D.Hierarchical structure with highly ordered macroporous-mesoporous metal-organic frameworks as dual function for CO2 fixation.iScience2019;15:514-23 PMCID:PMC6538925

[65]

Li K,Li C.Trimodal hierarchical porous metal–organic frameworks with tunable mesoporous core–shell architectures.ACS Mater Lett2024;6:233-9

[66]

Zhao T,Sun Z.Hollow mesoporous metal organic framework single crystals enabled by growth kinetics control for enhanced photocatalysis.Adv Funct Mater2023;33:2303644

[67]

Liu C,Lin L.Ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity via multiple selective assembly.Nat Commun2020;11:4971 PMCID:PMC7532534

[68]

Li Y,Gao J.Heterodimers made of upconversion nanoparticles and metal-organic frameworks.J Am Chem Soc2017;139:13804-10

[69]

Liang J,Ding S.Complex hollow bowl-like nanostructures: synthesis, application, and perspective.Adv Funct Mater2021;31:2007801

[70]

Zhong G,Han J.Anisotropic interface successive assembly for bowl-shaped metal-organic framework nanoreactors with precisely controllable meso-/microporous nanodomains.ACS Nano2023;17:25061-9

[71]

Lee G,Oh S,Oh M.Tip-to-middle anisotropic MOF-On-MOF growth with a structural adjustment.J Am Chem Soc2020;142:3042-9

[72]

Zhang Q,Chen B.Phase-competition-driven formation of hierarchical FeNiZn-MIL-88B-on-MOF-5 octapods displaying high selectivity for the RWGS reaction.Chem Commun2019;55:8450-3

[73]

Kwon O,Park S.Computer-aided discovery of connected metal-organic frameworks.Nat Commun2019;10:3620 PMCID:PMC6689093

[74]

Wang F,Ma Y.Sequential oriented growth of Zr-fcu-MOFs on different crystal facets of MIL-96(Al).Cryst Growth Des2021;21:4571-8

[75]

Yu Y,Huang L.Solar-driven CO2 conversion promoted by MOF-on-MOF homophase junction.Catal Commun2021;150:106270

[76]

Ren S,Ge F,Zheng H.Trimetal-based N-doped carbon nanotubes arrays on Ni foams as self-supported electrodes for hydrogen/oxygen evolution reactions and water splitting.J Power Sources2020;480:228866

[77]

Zha Q,Qin G.Cobalt-based MOF-on-MOF two-dimensional heterojunction nanostructures for enhanced oxygen evolution reaction electrocatalytic activity.Inorg Chem2020;59:1295-305

[78]

Zhao M,Chen B.Selective epitaxial growth of oriented hierarchical metal-organic framework heterostructures.J Am Chem Soc2020;142:8953-61

[79]

Wang XG,Li MJ.Construction of flexible-on-rigid hybrid-phase metal-organic frameworks for controllable multi-drug delivery.Angew Chem Int Ed Engl2020;59:18078-86

[80]

Lyu D,Wang Y.Low-symmetry MOF-based patchy colloids and their precise linking via site-selective liquid bridging to form supra-colloidal and supra-framework architectures.Angew Chem Int Ed Engl2022;61:e202115076

[81]

Li A,Liu K,Wang T.Hollow metal organic framework improves the sensitivity and anti-interference of the detection of exhaled volatile organic compounds.Adv Funct Mater2022;32:2202805

[82]

Yao W,Ding J.Hierarchically ordered macro-mesoporous electrocatalyst with hydrophilic surface for efficient oxygen reduction reaction.Adv Mater2023;35:e2301894

[83]

Cai ZX,Xia YJ.Tailored catalytic nanoframes from metal-organic frameworks by anisotropic surface modification and etching for the hydrogen evolution reaction.Angew Chem Int Ed Engl2021;60:4747-55

[84]

Liu W,Yang Q.Multi-shelled hollow metal-organic frameworks.Angew Chem Int Ed Engl2017;56:5512-6

[85]

Qin Y,Li Y.Hollow mesoporous metal–organic frameworks with enhanced diffusion for highly efficient catalysis.ACS Catal2020;10:5973-8

[86]

Liu XY,Goh TW.Using a multi-shelled hollow metal-organic framework as a host to switch the guest-to-host and guest-to-guest interactions.Angew Chem Int Ed Engl2018;57:2110-4

[87]

Dissegna S,Heinz WR,Fischer RA.Defective metal-organic frameworks.Adv Mater2018;30:e1704501

[88]

Park J,Zhou HC.Structure-assisted functional anchor implantation in robust metal-organic frameworks with ultralarge pores.J Am Chem Soc2015;137:1663-72

[89]

Zhou Y,Zhang S.CO2 coordination-driven top-down synthesis of a 2D non-layered metal–organic framework.Fundam Res2022;2:674-81

[90]

Cai G,Kassymova M,Ding M.Large-scale production of hierarchically porous metal-organic frameworks by a reflux-assisted post-synthetic ligand substitution strategy.ACS Cent Sci2021;7:1434-40 PMCID:PMC8393232

[91]

Huang C,Jin Y.A general synthesis of nanostructured conductive metal-organic frameworks from insulating MOF precursors for supercapacitors and chemiresistive sensors.Angew Chem Int Ed Engl2024;63:e202313591

[92]

Yu D,Song Q.A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures.Nat Commun2020;11:927 PMCID:PMC7026438

[93]

León-Alcaide L,Esteve-Rochina M.Implementing mesoporosity in zeolitic imidazolate frameworks through clip-off chemistry in heterometallic iron-zinc ZIF-8.J Am Chem Soc2023;145:23249-56 PMCID:PMC10603776

[94]

Albolkany MK,Wang Y.Molecular surgery at microporous MOF for mesopore generation and renovation.Angew Chem Int Ed Engl2021;60:14601-8

[95]

Bai W,Wang X,Fu Y.Transformation of ZIF-67 nanocubes to ZIF-L nanoframes.J Am Chem Soc2024;146:79-83

[96]

Dutta S,Lee S.Sculpting in-plane fractal porous patterns in two-dimensional MOF nanocrystals for photoelectrocatalytic CO2 reduction.Angew Chem Int Ed Engl2023;62:e202303890

[97]

Wei J,Liang Z.Heterometallic metal–organic framework nanocages of high crystallinity: an elongated channel structure formed in situ through metal-ion (M = W or Mo) doping.J Mater Chem A2018;6:23336-44

[98]

Tu M,Kravchenko DE.Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks.Nat Mater2021;20:93-9

[99]

Ai Z,Wang J.Generation of hierarchical pores in metal–organic frameworks by introducing rigid modulator.CCS Chem2022;4:3705-14

[100]

Wang KY,Zhang J.Creating hierarchical pores in metal-organic frameworks via postsynthetic reactions.Nat Protoc2023;18:604-25

[101]

Zheng F,Wang K,Li G.Recent advances in bimetallic metal-organic frameworks and their derivatives for thermal catalysis.Nano Res2023;16:12919-35

[102]

Choe K,Wang H.Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks.Angew Chem Int Ed Engl2020;59:3650-7

[103]

Wei RJ,Duan H.Ultrathin metal-organic framework nanosheets exhibiting exceptional catalytic activity.J Am Chem Soc2022;144:17487-95

[104]

Wang Z,Zhang G.The controllable synthesis of urchin-shaped hierarchical superstructure MOFs with high catalytic activity and stability.Chem Commun2021;57:8758-61

[105]

Xuan W,Liu Y.Mesoporous metal-organic framework materials.Chem Soc Rev2012;41:1677-95

[106]

Cao L,Peng F.Self-supporting metal-organic layers as single-site solid catalysts.Angew Chem Int Ed Engl2016;55:4962-6

[107]

Zhang F,Zhang B.CO2 controls the oriented growth of metal-organic framework with highly accessible active sites.Nat Commun2020;11:1431 PMCID:PMC7080726

[108]

Chang GG,Zhang YX.Construction of hierarchical metal-organic frameworks by competitive coordination strategy for highly efficient CO2 conversion.Adv Mater2019;31:e1904969

[109]

Cai G.A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability.Angew Chem Int Ed Engl2017;56:563-7

[110]

Xu Z,Chen X,Xiao G.Mesoporous zeolitic imidazolate frameworks.CCS Chem2022;4:2906-13

[111]

Guo J,Zhu Y.Metal-organic frameworks as catalytic selectivity regulators for organic transformations.Chem Soc Rev2021;50:5366-96

[112]

Dunn B,Tarascon JM.Electrical energy storage for the grid: a battery of choices.Science2011;334:928-35

[113]

Simon P.Materials for electrochemical capacitors.Nat Mater2008;7:845-54

[114]

Xu Y,Xu R.Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting.Chem Soc Rev2016;45:3039-52

[115]

Wachsman ED.Lowering the temperature of solid oxide fuel cells.Science2011;334:935-9

[116]

Wang Y,She P,Song L.Nature-inspired three-dimensional Au/spinach as a binder-free and self-standing cathode for high-performance Li-O2 batteries.Chem Res Chin Univ2022;38:200-8

[117]

Peng Y,Morsali A.Metal-organic frameworks as electrocatalysts.Angew Chem Int Ed Engl2023;62:e202214707

[118]

Pan X,Yu K.One-dimensional metal-organic frameworks: synthesis, structure and application in electrocatalysis.Next Mater2023;1:100010

[119]

Ge K,Zhao Y.Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis.Angew Chem Int Ed Engl2021;60:12097-102

[120]

Choi WH,Park DG.Autogenous production and stabilization of highly loaded sub-nanometric particles within multishell hollow metal-organic frameworks and their utilization for high performance in Li-O2 batteries.Adv Sci2020;7:2000283 PMCID:PMC7201254

[121]

Shinde SS,Jung J.Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries.Energy Environ Sci2019;12:727-38

[122]

Meng X,Ouyang S.Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis.Adv Mater2016;28:6781-803

[123]

Li R,Zhou K.Metal-organic-framework-based catalysts for photoreduction of CO2.Adv Mater2018;30:e1705512

[124]

Li X,Xue H,Xu Q.Metal–organic frameworks as a platform for clean energy applications.EnergyChem2020;2:100027

[125]

Zhan W,Han X.Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks.Nanomicro Lett2019;11:1 PMCID:PMC6325097

[126]

Qian Y,Pang H.A review of MOFs and their composites-based photocatalysts: synthesis and applications.Adv Funct Mater2021;31:2104231

[127]

Yu F,Wang Y,Duan C.Hierarchically porous metal-organic framework/MoS2 interface for selective photocatalytic conversion of CO2 with H2O into CH3COOH.Angew Chem Int Ed Engl2021;60:24849-53

[128]

Wu T,Wang Z.Unsaturated NiII centers mediated the coordination activation of benzylamine for enhancing photocatalytic activity over ultrathin Ni MOF-74 nanosheets.ACS Appl Mater Interfaces2021;13:61286-95

[129]

He T,Ni B.Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms.Angew Chem Int Ed Engl2018;57:3493-8

[130]

Li H,Yuan ZY,Ma TY.Titanium phosphonate based metal-organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution.Angew Chem Int Ed Engl2018;57:3222-7

[131]

Qi SC,Yang ZH.Photo-responsive carbon capture over metalloporphyrin-C60 metal-organic frameworks via charge-transfer.Research2023;6:0261 PMCID:PMC10595220

[132]

Cheng X,Wang S,Sun W.Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation.ACS Catal2021;11:650-8

[133]

Guo F,Li R,Wang Y.Nanosheet-engineered NH2-MIL-125 with highly active facets for enhanced solar CO2 reduction.ACS Catal2022;12:9486-93

[134]

Liu Z,Li M.Construction of single Ni atom-immobilized ZIF-8 with ordered hierarchical pore structures for selective CO2 photoreduction.ACS Catal2023;13:6630-40

[135]

Liu C,Sun Q.Site-specific growth of MOF-on-MOF heterostructures with controllable nano-architectures: beyond the combination of MOF analogues.Chem Sci2020;11:3680-6 PMCID:PMC8152623

[136]

Gong X,Chen Z.Insights into the structure and dynamics of metal-organic frameworks via transmission electron microscopy.J Am Chem Soc2020;142:17224-35

[137]

Wang Y,Wang DR,Li D.Machine learning-assisted discovery of propane-selective metal-organic frameworks.J Am Chem Soc2024;146:6955-61

[138]

Pétuya R,Antypov D.Machine-learning prediction of metal-organic framework guest accessibility from linker and metal chemistry.Angew Chem Int Ed Engl2022;61:e202114573 PMCID:PMC9303542

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/