Electrochemical conversion of CO2 via C−X bond formation: recent progress and perspective

Shuaiqiang Jia , Mengke Dong , Qinggong Zhu , Xinchen Kang , Haihong Wu , Buxing Han

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (4) : 60

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (4) :60 DOI: 10.20517/cs.2024.32
Review

Electrochemical conversion of CO2 via C−X bond formation: recent progress and perspective

Author information +
History +
PDF

Abstract

With the depletion of traditional energy sources and growing environmental concerns, it is becoming increasingly urgent to develop green, low-emission renewable energy technologies to replace fossil fuel-driven methods that emit carbon dioxide (CO2). Currently, the electrochemical production of high-value-added chemicals and fuels from CO2 has aroused great interest from scientists. However, to make full use of CO2 for the preparation of chemicals, it is necessary to expand the range of electrosynthesis methods, in particular by expanding reaction pathways through the reaction of CO2 with different substrates. In general, CO2 can form new covalent bonds with substrate molecules through the formation of C−X bonds, including C−H, C−C, C−N, C−O, and C−S bonds, which would expand the range of possible products by diversifying the reaction pathway. In this review, we focus on the research progress in electrochemical conversion of CO2 through C−X bond formation. We start by examining fundamentals of the reactions and summarizing the reaction modes. Next, we discuss the electrosynthesis of C−X bonds (C−H, C−C, C−N, C−O, C−S) using CO2 and different substrate molecules. Finally, (i) strategies for the design and activity optimization of catalyst materials and (ii) the future development of forming five types of bonds from CO2 and small molecules are discussed, along with an outlook on their future research prospects.

Keywords

Carbon dioxide / electrosynthesis / C−X bonds / new covalent bonds / high-value-added chemicals

Cite this article

Download citation ▾
Shuaiqiang Jia, Mengke Dong, Qinggong Zhu, Xinchen Kang, Haihong Wu, Buxing Han. Electrochemical conversion of CO2 via C−X bond formation: recent progress and perspective. Chemical Synthesis, 2024, 4(4): 60 DOI:10.20517/cs.2024.32

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He M,Han B.Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling.Angew Chem Int Ed Engl2013;52:9620-33

[2]

Wang Y,Li M,Zhang B.Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges.Chem Soc Rev2021;50:6720-33

[3]

Huang Y,Wu Y,Zhang B.Electrocatalytic construction of the C-N bond from the derivates of CO2 and N2.Sci China Chem2022;65:204-6

[4]

Pang Y,Wang Z.Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper.Nat Catal2019;2:251-8

[5]

Ran CK,Liao LL,Zhang W.Progress and challenges in dicarboxylation with CO2.NSO2023;2:20220024

[6]

Zhou Z,Wei L,Jian X.Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects.Energy Environ Sci2020;13:3185-206

[7]

Guo N,Bao A.Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process.Angew Chem Int Ed Engl2020;59:13778-84

[8]

Zhou Y,Liu M.Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons.Nat Chem2018;10:974-80

[9]

Yang D,Han B.Electroreduction of CO2 in ionic liquid-based electrolytes.Innovation2020;1:100016 PMCID:PMC8454664

[10]

Wang Q,Liu M,Qiu Y.Recent advances in photochemical/electrochemical carboxylation of olefins with CO2.Chin J Chem2024;42:2249-66

[11]

Jin H,Li H.MXene analogue: a 2D nitridene solid solution for high-rate hydrogen production.Angew Chem Int Ed Engl2022;61:e202203850 PMCID:PMC9322295

[12]

Chang S,Li J.Highly efficient electrocatalytic deuteration of acetylene to deuterated ethylene using deuterium oxide.Chin Chem Lett2023;34:107765

[13]

Zeng W.Electrochemical conversion of organic compounds and inorganic small molecules.Sci China Chem2024;67:3223-46

[14]

Liu X,Tao L,Zhang W.Recent advances in electrochemical carboxylation reactions using carbon dioxide.Green Chem Eng2022;3:125-37

[15]

Zhao Z,Wang S.Site-selective electrochemical C-H carboxylation of arenes with CO2.Angew Chem Int Ed Engl2023;62:e202214710

[16]

Zhang W,Li L.Electroreductive dicarboxylation of unactivated skipped dienes with CO2.Angew Chem Int Ed Engl2023;62:e202301892

[17]

Wang Y,Yang G,Ma D.Electrocarboxylation of aryl epoxides with CO2 for the facile and selective synthesis of β-hydroxy acids.Angew Chem Int Ed Engl2022;61:e202207746

[18]

Zhou H,Li Z.Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel.Nat Commun2021;12:4679 PMCID:PMC8371182

[19]

Wang T,Zhu X.Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction.Nat Catal2022;5:66-73

[20]

Zhang B,Gao M,Sun W.Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction.Nano Energy2021;80:105504

[21]

Singh K,Singh B.Synthesis of α-hydroxycarboxylic acids from various aldehydes and ketones by direct electrocarboxylation: a facile, efficient and atom economy protocol.Asian J Chem2021;33:839-45

[22]

Krzywda PM,Benes NE,Mul G.Carbon-nitrogen bond formation on Cu electrodes during CO2 reduction in NO3- solution.Appl Catal B Environ2022;316:121512

[23]

Li JY,Zhang K.Catalytic conversion of carbon dioxide through C-N bond formation.Molecules2019;24:182 PMCID:PMC6337678

[24]

Li R,Liu Z,Zou Y.Recent advances in upgrading of low-cost oxidants to value-added products by electrocatalytic reduction reaction.Adv Funct Mater2022;32:2208212

[25]

You B.Innovative strategies for electrocatalytic water splitting.Acc Chem Res2018;51:1571-80

[26]

Seh ZW,Dickens CF,Nørskov JK.Combining theory and experiment in electrocatalysis: insights into materials design.Science2017;355:eaad4998

[27]

Zhang H,Chen JG.Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane.Nat Commun2019;10:3340 PMCID:PMC6659690

[28]

Wang X,Ju W.Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts.Nat Nanotechnol2019;14:1063-70

[29]

Tang C,Jaroniec M.Electrocatalytic refinery for sustainable production of fuels and chemicals.Angew Chem Int Ed Engl2021;60:19572-90

[30]

Peng C,Zhang J.Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol.Nat Commun2021;12:1580 PMCID:PMC7952561

[31]

Muchez L,Kim M.Sacrificial anode-free electrosynthesis of α-hydroxy acids via electrocatalytic coupling of carbon dioxide to aromatic alcohols.ACS Sustainable Chem Eng2019;7:15860-4

[32]

Li Z,Wang J.Highly selective conversion of carbon dioxide to aromatics over tandem catalysts.Joule2019;3:570-83

[33]

Lum Y.Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu.Energy Environ Sci2018;11:2935-44

[34]

Leow WR,Ozden A.Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density.Science2020;368:1228-33

[35]

Wu Y,Lin Z,Wang H.Direct electrosynthesis of methylamine from carbon dioxide and nitrate.Nat Sustain2021;4:725-30

[36]

Deng T,Han S.Electrochemical CO2 reduction to C2+ products over Cu/Zn intermetallic catalysts synthesized by electrodeposition.Front Energy2024;18:80-8

[37]

De Luna P,Dinh CT.Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction.Nat Catal2018;1:103-10

[38]

Zhu Q,Kang X.Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture.Angew Chem Int Ed Engl2016;55:9012-6

[39]

Zhang S,Xia R.CO2 reduction: from homogeneous to heterogeneous electrocatalysis.Acc Chem Res2020;53:255-64

[40]

Kim D,Becknell N.Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles.J Am Chem Soc2017;139:8329-36

[41]

Gao S,Jiao X.Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel.Nature2016;529:68-71

[42]

Gao D,Wang J.Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles.J Am Chem Soc2015;137:4288-91

[43]

Lu Q,Zhou Y.A selective and efficient electrocatalyst for carbon dioxide reduction.Nat Commun2014;5:3242

[44]

Medina-Ramos J,Rosenthal J.Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials.J Am Chem Soc2014;136:8361-7 PMCID:PMC4225627

[45]

Ma W,Liu T.Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper.Nat Catal2020;3:478-87

[46]

Zhang S,Meyer TJ.Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate.J Am Chem Soc2014;136:1734-7

[47]

Wu Y,Lu X,Wang H.Domino electroreduction of CO2 to methanol on a molecular catalyst.Nature2019;575:639-42

[48]

Jia S,Wu H.Preparation of trimetallic electrocatalysts by one-step co-electrodeposition and efficient CO2 reduction to ethylene.Chem Sci2022;13:7509-15 PMCID:PMC9241956

[49]

Song Y,Zhao C,Wei W.Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol.Angew Chem Int Ed Engl2017;56:10840-4

[50]

Jia S,Chu M.Hierarchical metal-polymer hybrids for enhanced CO2 electroreduction.Angew Chem Int Ed Engl2021;60:10977-82

[51]

Nam DH,Rosas-Hernández A.Molecular enhancement of heterogeneous CO2 reduction.Nat Mater2020;19:266-76

[52]

Li F,Rosas-Hernández A.Molecular tuning of CO2-to-ethylene conversion.Nature2020;577:509-13

[53]

Ren S,Salvatore D.Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell.Science2019;365:367-9

[54]

Nørskov JK,Logadottir A.Trends in the exchange current for hydrogen evolution.J Electrochem Soc2005;152:J23

[55]

Shi R,Zhao Y.Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity.Nat Catal2021;4:565-74

[56]

Zhang Z,Luo D.“Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction.J Am Chem Soc2021;143:6855-64

[57]

Ren W,Yang W.Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2.Angew Chem Int Ed Engl2019;58:6972-6

[58]

Hu C,Zhao L.Carbon-based metal-free electrocatalysts: recent progress and forward looking.Chem Catal2022;2:2150-6

[59]

Kondo T,Suzuki T.Atomic-scale characterization of nitrogen-doped graphite: effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms.Phys Rev B2012;86:035436

[60]

Guo D,Akiba C,Kondo T.Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts.Science2016;351:361-5

[61]

Bagger A,Varela AS,Rossmeisl J.Electrochemical CO2 reduction: a classification problem.Chemphyschem2017;18:3266-73

[62]

Katayama Y,Giordano L.An in situ surface-enhanced infrared absorption spectroscopy study of electrochemical CO2 reduction: selectivity dependence on surface C-bound and O-bound reaction intermediates.J Phys Chem C2019;123:5951-63

[63]

Lin R,Cheong WC.PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption.Nano Res2019;12:2866-71

[64]

Deng T,Chen C.Polymer modification strategy to modulate reaction microenvironment for enhanced CO2 electroreduction to ethylene.Angew Chem Int Ed Engl2024;63:e202313796

[65]

Chen X,Chen C.Highly stable layered coordination polymer electrocatalyst toward efficient CO2-to-CH4 conversion.Adv Mater2024;36:e2310273

[66]

de Arquer FPG,Ozden A.CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2.Science2020;367:661-6

[67]

Li W,Gao Z.Bifunctional ionomers for efficient co-electrolysis of CO2 and pure water towards ethylene production at industrial-scale current densities.Nat Energy2022;7:835-43

[68]

Endrődi B,Samu A.High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell.Energy Environ Sci2020;13:4098-105

[69]

Zhang Y,Sun WY.In situ carbon-encapsulated copper-doped cerium oxide derived from MOFs for boosting CO2-to-CH4 electro-conversion.ACS Catal2023;13:1545-53

[70]

Jiang Y,Li J.Pushing the performance limit of Cu/CeO2 catalyst in CO2 electroreduction: a cluster model study for loading single atoms.ACS Nano2023;17:2620-8

[71]

Li H,Sun H.CuNCN derived Cu-based/CxNy catalysts for highly selective CO2 electroreduction to hydrocarbons.Appl Catal B Environ2023;320:121948

[72]

Zou H,Dai H.Electronic perturbation of copper single-atom CO2 reduction catalysts in a molecular way.Angew Chem Int Ed Engl2023;62:e202217220

[73]

Shi G,Du L.Constructing Cu-C bonds in a graphdiyne-regulated cu single-atom electrocatalyst for CO2 reduction to CH4.Angew Chem Int Ed Engl2022;61:e202203569

[74]

Wang Z,Xia C,You B.Efficient electroconversion of carbon dioxide to formate by a reconstructed amino-functionalized indium-organic framework electrocatalyst.Angew Chem Int Ed Engl2021;60:19107-12

[75]

Cui K,Wang C,Tang X.Modulating the D-π-A interactions in metal-covalent organic frameworks for efficient electroreduction of CO2 into formate.Angew Chem Int Ed Engl2024;63:e202407298

[76]

Zhu ZH,Hou SL.A facile strategy for constructing a carbon-particle-modified metal-organic framework for enhancing the efficiency of CO2 electroreduction into formate.Angew Chem Int Ed Engl2021;60:23394-402

[77]

Luo W,Mutschler R.Selective and stable electroreduction of CO2 to CO at the copper/indium interface.ACS Catal2018;8:6571-81

[78]

Rasul S,Jedidi A,Cavallo L.A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO.Angew Chem Int Ed Engl2015;54:2146-50

[79]

Yan C,Ye Y.Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction.Energy Environ Sci2018;11:1204-10

[80]

Jia S,Han S.Ultra-fast synthesis of three-dimensional porous Cu/Zn heterostructures for enhanced carbon dioxide electroreduction.Chem Sci2023;14:11474-80 PMCID:PMC10599477

[81]

Liu C,Huang JM,Xu M.In situ reconstruction of Cu-N coordinated MOFs to generate dispersive Cu/Cu2O nanoclusters for selective electroreduction of CO2 to C2H4.ACS Catal2022;12:15230-40

[82]

Zhang XD,Liu C.Asymmetric low-frequency pulsed strategy enables ultralong CO2 reduction stability and controllable product selectivity.J Am Chem Soc2023;145:2195-206

[83]

He Q,Hu Z,Wang D.Highly selective CO2 electroreduction to C2H4 using a dual-sites Cu(II) porphyrin framework coupled with Cu2O nanoparticles via a synergetic-tandem strategy.Angew Chem Int Ed Engl2024;63:e202407090

[84]

Zhang Y,Zhao C.Multicarbons generation factory: CuO/Ni single atoms tandem catalyst for boosting the productivity of CO2 electrocatalysis.Sci Bull2022;67:1679-87

[85]

Xu H,He H.Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper.Nat Energy2020;5:623-32

[86]

Gu Z,Chen Z.Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface.Joule2021;5:429-40

[87]

Guo C,Shi Y.Electrocatalytic reduction of CO2 to ethanol at close to theoretical potential via engineering abundant electron-donating Cuδ+ species.Angew Chem Int Ed Engl2022;61:e202205909

[88]

Qiu XF,Yu C.A stable and conductive covalent organic framework with isolated active sites for highly selective electroreduction of carbon dioxide to acetate.Angew Chem Int Ed Engl2022;61:e202206470

[89]

Liu Y,Quan X.Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond.J Am Chem Soc2015;137:11631-6

[90]

Sun X,Kang X.Design of a Cu(i)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid.Green Chem2017;19:2086-91

[91]

Zhang R,Wang S.Synthesis of n-Propanol from CO2 electroreduction on bicontinuous Cu2O/Cu nanodomains.Angew Chem Int Ed Engl2024;63:e202405733

[92]

Alkayal A,Montanaro S,Malkov AV.Harnessing applied potential: selective β-hydrocarboxylation of substituted olefins.J Am Chem Soc2020;142:1780-5

[93]

Sheta AM,Mashaly MA.Selective electrosynthetic hydrocarboxylation of α,β-unsaturated esters with carbon dioxide**.Angew Chem Int Ed Engl2021;60:21832-7 PMCID:PMC8518608

[94]

Sheta AM,Said SB,Malkov AV.Selective α,δ-hydrocarboxylation of conjugated dienes utilizing CO2 and electrosynthesis.Chem Sci2020;11:9109-14 PMCID:PMC8163448

[95]

Liao LL,Cao KG.Electrochemical ring-opening dicarboxylation of strained carbon-carbon single bonds with CO2: facile synthesis of diacids and derivatization into polyesters.J Am Chem Soc2022;144:2062-8

[96]

Sun GQ,Liao LL.Nickel-catalyzed electrochemical carboxylation of unactivated aryl and alkyl halides with CO2.Nat Commun2021;12:7086 PMCID:PMC8648755

[97]

Wang Y,Pan D.Metal-free electrochemical carboxylation of organic halides in the presence of catalytic amounts of an organomediator.Angew Chem Int Ed Engl2022;61:e202210201

[98]

Sun GQ,Zhang W.Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations.Nature2023;615:67-72 PMCID:PMC10036166

[99]

Yuan G,Lin C.Efficient electrochemical synthesis of 2-arylsuccinic acids from CO2 and aryl-substituted alkenes with nickel as the cathode.Electrochimica Acta2008;53:2170-6

[100]

Li C,Ji X,Ye J.Highly regioselective electrochemical synthesis of dioic acids from dienes and carbon dioxide.Electrochim Acta2011;56:1529-34

[101]

Chen BL,Zhu HW,Wang H.CO2 as a C1-organic building block: Enantioselective electrocarboxylation of aromatic ketones with CO2catalyzed by cinchona alkaloids under mild conditions.Electrochimica Acta2014;116:475-83

[102]

Feng Q,Liu S,Liu F.Electrocatalytic carboxylation of aromatic ketones with carbon dioxide in ionic liquid 1-butyl-3-methylimidazoliumtetrafluoborate to α-hydroxy-carboxylic acid methyl ester.Electrochim Acta2011;56:5137-41

[103]

Yang H,Wang H.Cathode made of compacted silver nanoparticles for electrocatalytic carboxylation of 1-phenethyl bromide with CO2.Chin J Catal2016;37:994-8

[104]

Li C,Tao L.Electrogenerated-bases promoted electrochemical synthesis of N-bromoamino acids from imines and carbon dioxide.Tetrahedron2014;70:1855-60

[105]

Xie SL,Wu HH,Zhou J.Direct electrochemical defluorinative carboxylation of gem-difluoroalkenes with carbon dioxide.Org Lett2020;22:8424-9

[106]

Ang NWJ,Ackermann L.Electroreductive cobalt-catalyzed carboxylation: cross-electrophile electrocoupling with atmospheric CO2.Angew Chem Int Ed Engl2020;59:12842-7 PMCID:PMC7496797

[107]

Yang D,Schiffer ZJ.Direct electrochemical carboxylation of benzylic C−N bonds with carbon dioxide.ACS Catal2019;9:4699-705

[108]

Li C,Jiang H.Electrocarboxylation of alkynes with carbon dioxide in the presence of metal salt catalysts.Chin J Chem2010;28:1685-9

[109]

Kong Y,Xu L.Electrochemical synthesis of organonitrogen compounds from N-integrated CO2 reduction reaction.Acta Phys Chim Sin2024;40:2307049

[110]

Yuan M,Bai Y.Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with mott-schottky heterostructure catalysts.Angew Chem Int Ed Engl2021;60:10910-8

[111]

Jouny M,Cheng T.Formation of carbon-nitrogen bonds in carbon monoxide electrolysis.Nat Chem2019;11:846-51

[112]

Li J.Electrochemically driven C−N bond formation from CO2 and ammonia at the triple-phase boundary.Chem Sci2022;13:3957-64 PMCID:PMC8985509

[113]

Yu Y,Liu Z.Activation of Ga liquid catalyst with continuously exposed active sites for electrocatalytic C-N coupling.Angew Chem Int Ed Engl2024;63:e202402236

[114]

Yuan M,Zhang H.Host-guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal-organic framework.Energy Environ Sci2022;15:2084-95

[115]

Yuan M,Xu Y.Artificial frustrated Lewis pairs facilitating the electrochemical N2 and CO2 conversion to urea.Chem Catal2022;2:309-20

[116]

Liu S,Wang Z.AuCu nanofibers for electrosynthesis of urea from carbon dioxide and nitrite.Cell Rep Phys Sci2022;3:100869

[117]

Meng N,Liu Y,Zhang B.Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets.Cell Rep Phys Sci2021;2:100378

[118]

Saravanakumar D,Lee S,Shin W.Electrocatalytic conversion of carbon dioxide and nitrate ions to urea by a titania-nafion composite electrode.ChemSusChem2017;10:3999-4003

[119]

Chen C,Wen X.Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions.Nat Chem2020;12:717-24

[120]

Shibata M,Furuya N.Electrochemical synthesis of urea on reduction of carbon dioxide with nitrate and nitrite ions using Cu-loaded gas-diffusion electrode.J Electroanal Chem1995;387:143-5

[121]

Shibata M.Electrochemical synthesis of urea at gas-diffusion electrodes: Part VI. Simultaneous reduction of carbon dioxide and nitrite ions with various metallophthalocyanine catalysts.J Electroanal Chem2001;507:177-84

[122]

Huang Y,Wang C.Direct electrosynthesis of urea from carbon dioxide and nitric oxide.ACS Energy Lett2022;7:284-91

[123]

Lv Z,Zhao L.Coactivation of multiphase reactants for the electrosynthesis of urea.Adv Energy Mater2023;13:2300946

[124]

Yuan M,Bai Y.Electrochemical C-N coupling with perovskite hybrids toward efficient urea synthesis.Chem Sci2021;12:6048-58 PMCID:PMC8098680

[125]

Lv C,Liu H.Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide.Nat Sustain2021;4:868-76

[126]

Xu M,Zhang Y.Kinetically matched C-N coupling toward efficient urea electrosynthesis enabled on copper single-atom alloy.Nat Commun2023;14:6994 PMCID:PMC10620222

[127]

Guo C,Lan X.Electrochemical upgrading of formic acid to formamide via coupling nitrite co-reduction.J Am Chem Soc2022;144:16006-11

[128]

Shao J,Wang Y.Scalable electrosynthesis of formamide through C-N coupling at the industrially relevant current density of 120 mA cm-2.Angew Chem Int Ed Engl2022;61:e202213009

[129]

Fang Y,Liu Z.Synthesis of amino acids by electrocatalytic reduction of CO2 on chiral Cu surfaces.Chem2023;9:460-71

[130]

Han L,Fang K.The splanchnic mesenchyme is the tissue of origin for pancreatic fibroblasts during homeostasis and tumorigenesis.Nat Commun2023;14:1 PMCID:PMC9810714

[131]

Weng LC,Weber AZ.Towards membrane-electrode assembly systems for CO2 reduction: a modeling study.Energy Environ Sci2019;12:1950-68

[132]

Garg S,Weber AZ.Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials.J Mater Chem A2020;8:1511-44

[133]

Mo Y,Rughoobur G.Microfluidic electrochemistry for single-electron transfer redox-neutral reactions.Science2020;368:1352-7

[134]

Vara BA,Wang W,Johnston JN.Enantioselective small molecule synthesis by carbon dioxide fixation using a dual Brønsted acid/base organocatalyst.J Am Chem Soc2015;137:7302-5 PMCID:PMC4708058

[135]

Yousefi R,Payne JL,Schley ND.Catalytic, enantioselective synthesis of cyclic carbamates from dialkyl amines by CO2-capture: discovery, development, and mechanism.J Am Chem Soc2019;141:618-25 PMCID:PMC6528176

[136]

Bansode A.Continuous DMC synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent.ACS Catal2014;4:3877-80

[137]

Selva M,Rodríguez-padrón D.Applications of dimethyl carbonate for the chemical upgrading of biosourced platform chemicals.ACS Sustainable Chem Eng2019;7:6471-9

[138]

Zhang M,Xiao M,Wang S.Continuous dimethyl carbonate synthesis from CO2 and methanol using Cu-Ni@VSiO as catalyst synthesized by a novel sulfuration method.Catalysts2018;8:142

[139]

Lee KM,Balamurugan M,Jo YI.Redox-neutral electrochemical conversion of CO2 to dimethyl carbonate.Nat Energy2021;6:733-41

[140]

Li X,Wu W.Convergent paired electrosynthesis of dimethyl carbonate from carbon dioxide enabled by designing the superstructure of axial oxygen coordinated nickel single-atom catalysts.Energy Environ Sci2023;16:502-12

[141]

Wang H,Lan Y,Lu J.Electrosynthesis of cyclic carbonates from CO2 and diols in ionic liquids under mild conditions.Int J Electroch Sci2011;6:4218-27

[142]

Xiao Y,Yang H,Lu J.Electrosynthesis of enantiomerically pure cyclic carbonates from CO2 and chiral epoxides.Electrochem Commun2014;43:71-4

[143]

Zhang J,Shi Y,Wang H.Highly efficient electrocatalysis for the fixation of CO2 into cyclic carbonates with carbon sphere-loaded copper nanoparticles cathode material.J Electroanal Chem2021;882:114962

[144]

Pérez-Gallent E,Koper MTM.Mechanistic study of the electrosynthesis of propylene carbonate from propylene oxide and CO2 on copper electrodes.ChemElectroChem2019;6:2917-23

[145]

Li J,Chartrand D,Kornienko N.Electrochemical formation of C−S bonds from CO2 and small-molecule sulfur species.Nat Synth2023;2:757-65

[146]

Wu Y,Zhang B.Electrochemical C−S bond construction from CO2 and an inorganic sulfur source.Sci Bull2023;68:1466-8

[147]

Pan B,Li Y.Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction.Chem Catal2022;2:1267-76

[148]

Qin X,Honkala K.Cation-induced changes in the inner- and outer-sphere mechanisms of electrocatalytic CO2 reduction.Nat Commun2023;14:7607 PMCID:PMC10665450

[149]

Jin S,Zhang K,Chen J.Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization.Angew Chem Int Ed Engl2021;60:20627-48

[150]

Yang Y,Yu H,Li K.Mitigating carbonate formation in CO2 electrolysis.Next Energy2023;1:100030

[151]

Govindarajan N,Chan K.How pH affects electrochemical processes.Science2022;375:379-80

[152]

Zhong H,Nakano Y.Effect of CO2 bubbling into aqueous solutions used for electrochemical reduction of CO2 for energy conversion and storage.J Phys Chem C2015;119:55-61

[153]

Overa S,Shrimant B.Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction.Nat Catal2022;5:738-45

[154]

Huang JE,Ozden A.CO2 electrolysis to multicarbon products in strong acid.Science2021;372:1074-8

[155]

Nguyen DLT,Won DH,Min BK.Effect of halides on nanoporous Zn-based catalysts for highly efficient electroreduction of CO2 to CO.Catal Commun2018;114:109-13

[156]

Resasco J,Clark E,Bell AT.Effects of anion identity and concentration on electrochemical reduction of CO2.ChemElectroChem2018;5:1064-72

[157]

Yuan L,Zhang X,Zhang S.Advances and challenges of electrolyzers for large-scale CO2 electroreduction.Mater Rep Energy2023;3:100177

[158]

Jia S,Wu H.Efficient electrocatalytic reduction of carbon dioxide to ethylene on copper-antimony bimetallic alloy catalyst.Chin J Catal2020;41:1091-8

[159]

Feng J,Zheng L.A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction.Nat Commun2020;11:4341 PMCID:PMC7455739

[160]

Zhao Q,Hu R.Selective etching quaternary MAX phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol.ACS Nano2021;15:4927-36

[161]

Chen Z,Liu W.Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level.Energy Environ Sci2021;14:2349-56

[162]

Hoang TTH,Ma S.Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol.J Am Chem Soc2018;140:5791-7

[163]

Ren W,Jia C.Electronic regulation of nickel single atoms by confined nickel nanoparticles for energy-efficient CO2 electroreduction.Angew Chem Int Ed Engl2022;61:e202203335

[164]

Gabardo CM,Edwards JP.Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly.Joule2019;3:2777-91

[165]

Endrődi B,Kecsenovity E,Sebők D.Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolyzers.Nat Energy2021;6:439-48 PMCID:PMC7610664

[166]

Wu Y,Yan X.Enhancing CO2 electroreduction to CH4 over Cu nanoparticles supported on N-doped carbon.Chem Sci2022;13:8388-94 PMCID:PMC9297438

[167]

Xia C,Jiang Q.Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices.Nat Energy2019;4:776-85

[168]

Zhu P,Liu CY.Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction.Proc Natl Acad Sci U S A2021;118:e2010868118 PMCID:PMC7812816

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/