A 3D ordered hierarchical crystalline porous organic salt for large-sized enzyme immobilization

Jinman Wang , Guolong Xing , Yu Zhao , Jinming Zhou , Bo Song , Li-Hua Chen , Weidong Zhu , Bao-Lian Su , Teng Ben

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (2) : 34

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (2) :34 DOI: 10.20517/cs.2024.24
review-article

A 3D ordered hierarchical crystalline porous organic salt for large-sized enzyme immobilization

Author information +
History +
PDF

Abstract

Crystalline porous organic salts (CPOSs) are an emerging class of promising materials with intrinsic highly polar nanoconfined microporosity. However, their single microporous structure greatly hinders their development in the field of catalysis and adsorption. Constructing a hierarchical porous structure can effectively reduce the mass transport resistance, thus expanding the scope of their applications. Herein, we report the synthesis of a three-dimensional (3D) ordered macro-/microporous hierarchical CPOS (HCPOS-1) using a template-assisted approach for the first time. The as-synthesized HCPOS-1 prepared from a polystyrene colloidal crystal template showcases a 3D ordered macroporous structure while also preserving the microporous structure. The 3D ordered macroporous structure in such a hierarchical structure, together with its hydrophilic surface, endows HCPOS-1 with the ability to immobilize large-sized enzymes through physical adsorption under mild conditions. The resulting catalase/HCPOS-1 showcases a high enzyme immobilization capacity and avoids undesired conformational changes of enzymes during the immobilization process, thus exhibiting excellent catalytic activity for the decomposition of hydrogen peroxide.

Keywords

Crystalline porous organic salts / hierarchical pores / template-assisted method / enzyme immobilization / catalysis

Cite this article

Download citation ▾
Jinman Wang, Guolong Xing, Yu Zhao, Jinming Zhou, Bo Song, Li-Hua Chen, Weidong Zhu, Bao-Lian Su, Teng Ben. A 3D ordered hierarchical crystalline porous organic salt for large-sized enzyme immobilization. Chemical Synthesis, 2024, 4(2): 34 DOI:10.20517/cs.2024.24

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xing G,Ben T.Crystalline porous organic salts.Chem Soc Rev2024;53:1495-513

[2]

Yu S,Chen LH,Su BL.Crystalline porous organic salts: from micropore to hierarchical pores.Adv Mater2020;32:e2003270

[3]

Xing G,Das S,Qiu S.Synthesis of crystalline porous organic salts with high proton conductivity.Angew Chem Int Ed Engl2018;57:5345-9

[4]

Xing G,Bracco S.A double helix of opposite charges to form channels with unique CO2 selectivity and dynamics.Chem Sci2019;10:730-6 PMCID:PMC6354830

[5]

Zhao Y,Pei C.Colossal negative linear compressibility in porous organic salts.J Am Chem Soc2020;142:3593-9

[6]

Zhang S,Das S,Zhu W.Crystalline porous organic salt for ultrarapid adsorption/desorption-based atmospheric water harvesting by dual hydrogen bond system.Angew Chem Int Ed Engl2022;61:e202208660

[7]

Xing G,Zhu W.Reply to the correspondence on “Crystalline porous organic salt for ultrarapid adsorption/desorption-based atmospheric water harvesting by dual hydrogen bond system”.Angew Chem Int Ed Engl2023;62:e202215074

[8]

Yamamoto A,Hisaki I,Tohnai N.Multifunctionalized porosity in zeolitic diamondoid porous organic salt: selective adsorption and guest-responsive fluorescent properties.Tetrahedron Lett2013;54:1268-73

[9]

Ami T,Tsuchiya K.Porous organic salts: diversifying void structures and environments.Angew Chem Int Ed Engl2022;61:e202202597

[10]

Sei H,Sotome H,Tohnai N.Cage-like sodalite-type porous organic salts enabling luminescent molecule’s incorporation and room-temperature phosphorescence induction in air.Small2023;19:e2301887

[11]

Brekalo I,Barbour LJ,Friščić T.Microporosity of a guanidinium organodisulfonate hydrogen-bonded framework.Angew Chem Int Ed Engl2020;59:1997-2002

[12]

O'Shaughnessy M,Clowes R.Controlling the crystallisation and hydration state of crystalline porous organic salts.Chemistry2023;29:e202302420 PMCID:PMC10946969

[13]

Karmakar A,Anothumakkool B.Hydrogen-bonded organic frameworks (HOFs): a new class of porous crystalline proton-conducting materials.Angew Chem Int Ed Engl2016;55:10667-71

[14]

Comotti A,Yamamoto A.Engineering switchable rotors in molecular crystals with open porosity.J Am Chem Soc2014;136:618-21

[15]

Bracco S,Negroni M.CO2 regulates molecular rotor dynamics in porous materials.Chem Commun2017;53:7776-9

[16]

Chen LH,Su BL.Hierarchy in materials for maximized efficiency.Natl Sci Rev2020;7:1626-30 PMCID:PMC8290953

[17]

Chen LH,Wang Z,Xie Z.Hierarchically structured zeolites: from design to application.Chem Rev2020;120:11194-294

[18]

Zhou J,Wang Y.The essential mass transfer step in hierarchical/nano zeolite: surface diffusion.Natl Sci Rev2020;7:1630-2 PMCID:PMC8288644

[19]

Stein A,Rudisill SG.Design and functionality of colloidal-crystal-templated materials--chemical applications of inverse opals.Chem Soc Rev2013;42:2763-803

[20]

Li P,Wang TC.Hierarchically engineered mesoporous metal-organic frameworks toward cell-free immobilized enzyme systems.Chem2018;4:1022-34

[21]

Shen K,Chen X.Ordered macro-microporous metal-organic framework single crystals.Science2018;359:206-10

[22]

Sun M,Hu Z.Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency.Matter2020;3:1226-45

[23]

Yao W,Wang Y.Nitrogen-doped carbon composites with ordered macropores and hollow walls.Angew Chem Int Ed Engl2021;60:23729-34

[24]

Yao W,Zhang Y.Hierarchically ordered porous carbon with atomically dispersed cobalt for oxidative esterification of furfural.Ind Chem Mater2023;1:106-16

[25]

Zhao X,Li S.Macro/microporous covalent organic frameworks for efficient electrocatalysis.J Am Chem Soc2019;141:6623-30

[26]

Liu T,Song M.Ordered macro-microporous single crystals of covalent organic frameworks with efficient sorption of iodine.J Am Chem Soc2023;145:2544-52

[27]

Schoemaker HE,Wubbolts MG.Dispelling the myths - biocatalysis in industrial synthesis.Science2003;299:1694-7

[28]

Straathof AJJ.Transformation of biomass into commodity chemicals using enzymes or cells.Chem Rev2014;114:1871-908

[29]

Liang W,Carraro F.Metal-organic framework-based enzyme biocomposites.Chem Rev2021;121:1077-129

[30]

Huang S,Ouyang G.Confining enzymes in porous organic frameworks: from synthetic strategy and characterization to healthcare applications.Chem Soc Rev2022;51:6824-63

[31]

Chen W,Zoabi A,Willner I.Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles.Nat Catal2018;1:689-95

[32]

An H,Wang T.Metal-organic framework disintegrants: enzyme preparation platforms with boosted activity.Angew Chem Int Ed Engl2020;59:16764-9

[33]

Lu J,Jiang Y.Fabrication of microporous metal-organic frameworks in uninterrupted mesoporous tunnels: hierarchical structure for efficient trypsin immobilization and stabilization.Angew Chem Int Ed Engl2020;59:6428-34

[34]

Liang J,Yong J.Locking the ultrasound-induced active conformation of metalloenzymes in metal-organic frameworks.J Am Chem Soc2022;144:17865-75

[35]

Tang J,Zheng Q.In-situ encapsulation of protein into nanoscale hydrogen-bonded organic frameworks for intracellular biocatalysis.Angew Chem Int Ed Engl2021;60:22315-21

[36]

Chen G,Shen Y.Protein-directed, hydrogen-bonded biohybrid framework.Chem2021;7:2722-42

[37]

Wied P,Bolivar JM,Falcaro P.Combining a genetically engineered oxidase with hydrogen-bonded organic frameworks (HOFs) for highly efficient biocomposites.Angew Chem Int Ed Engl2022;61:e202117345 PMCID:PMC9305891

[38]

Chen G,Huang S,Zhu F.Hydrogen-bonded organic framework biomimetic entrapment allowing non-native biocatalytic activity in enzyme.Nat Commun2022;13:4816 PMCID:PMC9381776

[39]

Xing C,Mu Z.Enhancing enzyme activity by the modulation of covalent interactions in the confined channels of covalent organic frameworks.Angew Chem Int Ed Engl2022;61:e202201378

[40]

Feng M,Xing C.Covalent organic framework based crosslinked porous microcapsules for enzymatic catalysis.Angew Chem Int Ed Engl2023;62:e202306621

[41]

Liang J,Njegic B.Insight into bioactivity of in-situ trapped enzyme-covalent-organic frameworks.Angew Chem Int Ed Engl2023;62:e202303001

[42]

Zhang Y,Mu Z.Harnessing self-repairing and crystallization processes for effective enzyme encapsulation in covalent organic frameworks.J Am Chem Soc2023;145:13469-75

[43]

Liu H,Guo J.Reticular synthesis of highly crystalline three-dimensional mesoporous covalent-organic frameworks for lipase inclusion.J Am Chem Soc2023;145:23227-37

[44]

Liu S.Co-encapsulating cofactor and enzymes in hydrogen-bonded organic frameworks for multienzyme cascade reactions with cofactor recycling.Angew Chem Int Ed Engl2023;62:e202308562

[45]

Freund R,Arnauts G.The current status of MOF and COF applications.Angew Chem Int Ed Engl2021;60:23975-4001

[46]

Kandambeth S,Shinde DB.Self-templated chemically stable hollow spherical covalent organic framework.Nat Commun2015;6:6786

[47]

Sun Q,Aguila B.Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks.J Am Chem Soc2018;140:984-92

[48]

Liang W,Maddigan NK.Control of structure topology and spatial distribution of biomacromolecules in protein@ZIF-8 biocomposites.Chem Mater2018;30:1069-77

[49]

Feng Y,Wang Z.Three-dimensional ordered magnetic macroporous metal-organic frameworks for enzyme immobilization.J Colloid Interface Sci2021;590:436-45

[50]

Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem1976;72:248-54

[51]

Liang W,Yao Y.Enhanced bioactivity of enzyme/MOF biocomposite via host framework engineering.J Am Chem Soc2023;145:20365-74

[52]

Ou P.A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells.J Biochem Biophys Methods1996;31:59-67

[53]

Li M,Zheng Y.Fabricating covalent organic framework capsules with commodious microenvironment for enzymes.J Am Chem Soc2020;142:6675-81

[54]

Stein A.Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond.Curr Opin Solid St M2001;5:553-64

[55]

Liu X,Zhang Y.Two-dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing.ACS Nano2019;13:5222-30

[56]

Fita I.The NADPH binding site on beef liver catalase.Proc Natl Acad Sci U S A1985;82:1604-8 PMCID:PMC397320

[57]

Jesionowski T,Krajewska B.Enzyme immobilization by adsorption: a review.Adsorption2014;20:801-21

[58]

Liang W,Solomon MB.Enzyme encapsulation in a porous hydrogen-bonded organic framework.J Am Chem Soc2019;141:14298-305

[59]

Dong X,Yang P.Ultraviolet-visible (UV-Vis) and fluorescence spectroscopic investigation of the interactions of ionic liquids and catalase.Appl Spectrosc2016;70:1851-60

[60]

Liang W,Carraro F.Enhanced activity of enzymes encapsulated in hydrophilic metal-organic frameworks.J Am Chem Soc2019;141:2348-55

[61]

Pan Y,Li H.In situ monitoring of protein transfer into nanoscale channels.Cell Rep Phys Sci2021;2:100576

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/