Progress of construction of metal-zeolite catalysts for propane dehydrogenation

Qi Li , Shiying Li , Jianguo Wang , Sen Wang , Weibin Fan , Mei Dong

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (4) : 83

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (4) :83 DOI: 10.20517/cs.2024.198
review-article

Progress of construction of metal-zeolite catalysts for propane dehydrogenation

Author information +
History +
PDF

Abstract

The dehydrogenation of propane into propene is a crucial value-added process for producing raw chemicals from light hydrocarbons, such as shale gas. However, it faces challenges such as low propene yield and significant catalyst deactivation. In recent years, zeolite supported subnanometer or nanoparticles catalysts have attracted considerable attention and made remarkable progress due to their superior activity and exceptionally high thermal stability. In this review, we present an overview of design ideas of metal-containing zeolite catalysts used for propane dehydrogenation (PDH) reactions, with an emphasis on developments over the past ten years. A comprehensive summary is provided, encompassing the methodologies for preparing zeolite-supported metal catalysts, regulating the active site, modifying the pore structure and acid properties of zeolites, as well as their catalytic performances in PDH. The analyses emphasize the role and mechanism of metal-metal and/or metal-zeolite interactions in adjusting the structure of active sites, stabilizing metal species, enhancing catalytic performance and facilitating propylene production. Finally, the future directions of catalyst design for alkane dehydrogenation are envisioned.

Keywords

Propane dehydrogenation / zeolites / metal nanoparticles / interaction manners

Cite this article

Download citation ▾
Qi Li, Shiying Li, Jianguo Wang, Sen Wang, Weibin Fan, Mei Dong. Progress of construction of metal-zeolite catalysts for propane dehydrogenation. Chemical Synthesis, 2025, 5(4): 83 DOI:10.20517/cs.2024.198

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chernyak SA,Dath JP,Khodakov AY.Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook.Chem Soc Rev2022;51:7994-8044

[2]

Nawaz Z.Light alkane dehydrogenation to light olefin technologies: a comprehensive review.Rev Chem Eng2015;31:413-36

[3]

Mériaudeau P,Dutel JF.Studies on PtxSny Bimetallics in NaY. II. Further characterization and catalytic properties in the dehydrogenation and hydrogenolysis of propane.J Catal1997;167:180-6

[4]

Zhang Y,Fang H,Huang Z.Catalytic alkane dehydrogenations.Sci Bull2015;60:1316-31

[5]

Feng Z,Wang Y.Recent advances on gallium-modified ZSM-5 for conversion of light hydrocarbons.Molecules2021;26:2234 PMCID:PMC8069487

[6]

Shi L,Yan B,Shao D.Progress in selective oxidative dehydrogenation of light alkanes to olefins promoted by boron nitride catalysts.Chem Commun2018;54:10936-46

[7]

Li C.Dehydrogenation of light alkanes to mono-olefins.Chem Soc Rev2021;50:4359-81

[8]

Chen S,Sun G.Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies.Chem Soc Rev2021;50:3315-54

[9]

Dai Y,Wang Q,Zhou C.Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane.Chem Soc Rev2021;50:5590-630

[10]

Farshi A,Burogerdi SH.FCC process role in propylene demands.Petrol Sci Technol2011;29:875-85

[11]

Monai M,Wannakao S.Propane to olefins tandem catalysis: a selective route towards light olefins production.Chem Soc Rev2021;50:11503-29

[12]

Sinfelt J.Catalytic hydrogenolysis and dehydrogenation over copper-nickel alloys.J Catal1972;24:283-96

[13]

Dry ME.Technology of the Fischer-Tropsch process.Catal Rev1981;23:265-78

[14]

Besoukhanova C,Barthomeuf D,Bernard JR.Platinum–zeolite interactions in alkaline L zeolites. Correlations between catalytic activity and platinum state.J Chem Soc Faraday Trans 11981;77:1595-604

[15]

Balakrishnan K.FTIR study of bimetallic Pt-Sn/Al2O3 catalysts.J Catal1992;138:491-9

[16]

Lieske H,Spindler H.Reactions of platinum in oxygen- and hydrogen-treated Pt/γ-Al2O3 catalysts I. Temperature-programmed reduction, adsorption, and redispersion of platinum.J Catal1983;81:8-16

[17]

Melnikov DP,Glotov AP.Dehydrogenation of light alkanes (a review).Pet Chem2022;62:1027-46

[18]

Wang G,Li C.Recent progress in commercial and novel catalysts for catalytic dehydrogenation of light alkanes.Chem Rec2020;20:604-16

[19]

Ni L,Bermejo-Deval R.Highly active and selective sites for propane dehydrogenation in zeolite Ga-BEA.J Am Chem Soc2022;144:12347-56

[20]

Long J,Wei S.Direct dehydrogenation of propane over Co@silicalite-1 zeolite: steaming-induced restructuring of Co2+ active sites.Appl Surf Sci2023;614:156238

[21]

Sun Q,Fan Q.Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation.Angew Chem Int Ed Engl2020;59:19450-9

[22]

Zeng L,Sun F.Stable anchoring of single rhodium atoms by indium in zeolite alkane dehydrogenation catalysts.Science2024;383:998-1004

[23]

Chai Y,Li W.Noble metal particles confined in zeolites: synthesis, characterization, and applications.Adv Sci2019;6:1900299 PMCID:PMC6702632

[24]

Zhang Q,Yu J.Metal sites in zeolites: synthesis, characterization, and catalysis.Chem Rev2023;123:6039-106

[25]

Xiao L,Sui Z.Beyond the reverse Horiuti–Polanyi mechanism in propane dehydrogenation over Pt catalysts.ACS Catal2020;10:14887-902

[26]

Liu S,Liu G.Metal-based catalysts for the non-oxidative dehydrogenation of light alkanes to light olefins.React Chem Eng2021;6:9-26

[27]

Li S,Liu Y.Rational screening of transition metal single-atom-doped ZSM-5 zeolite catalyst for naphtha cracking from microkinetic analysis.Chem Eng J2022;445:136670

[28]

Lian Z,Liu T,Li B.Revealing the Janus character of the coke precursor in the propane direct dehydrogenation on Pt catalysts from a kMC simulation.ACS Catal2018;8:4694-704

[29]

Saerens S,Galvita VV,Reyniers M.The positive role of hydrogen on the dehydrogenation of propane on Pt(111).ACS Catal2017;7:7495-508

[30]

Yang ML,Fan C,Chen D.DFT study of propane dehydrogenation on Pt catalyst: effects of step sites.Phys Chem Chem Phys2011;13:3257-67

[31]

Hauser AW,Bajdich M,Bell AT.Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes.Phys Chem Chem Phys2013;15:20727-34

[32]

Huang YA,Lei M.Decoding the kinetic complexity of Pt-catalyzed n-butane dehydrogenation by machine learning and microkinetic analysis.ACS Catal2024;14:7978-95

[33]

Yang B,Wang HF,Rooney JJ.Evidence to challenge the universality of the Horiuti-Polanyi mechanism for hydrogenation in heterogeneous catalysis: origin and trend of the preference of a non-Horiuti-Polanyi mechanism.J Am Chem Soc2013;135:15244-50

[34]

Lee I.Infrared spectroscopy characterization of the chemistry of C4 hydrocarbons on Pt(111) single-crystal surfaces.J Phys Chem C2007;111:10062-72

[35]

Vajda S,Greeley JP.Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane.Nat Mater2009;8:213-6

[36]

Kumar P.Ethane and propane dehydrogenation on small platinum clusters supported on silica: an ab initio molecular dynamics and DFT study.Chempluschem2024;89:e202300347

[37]

Liu G,Zhao Z,Wu T.Platinum-modified ZnO/Al2O3 for propane dehydrogenation: minimized platinum usage and improved catalytic stability.ACS Catal2016;6:2158-62

[38]

Zhao ZJ,Xiong C.Hydroxyl-mediated non-oxidative propane dehydrogenation over VOx/γ-Al2O3 catalysts with improved stability.Angew Chem Int Ed Engl2018;57:6791-5

[39]

Bai P,Chen X.Modulation of surface chemistry by boron modification to achieve a superior VOX/Al2O3 catalyst in propane dehydrogenation.Catal Today2022;402:248-58

[40]

Shee D.Light alkane dehydrogenation over mesoporous Cr2O3/Al2O3 catalysts.Appl Catal A Gen2010;389:155-64

[41]

Chen S,Chang X.Defective TiOx overlayers catalyze propane dehydrogenation promoted by base metals.Science2024;385:295-300

[42]

Xie Z,Song W.Highly active nanosized anatase TiO2-x oxide catalysts in situ formed through reduction and ostwald ripening processes for propane dehydrogenation.ACS Catal2020;10:14678-93

[43]

Li C,Shang Q.Defective TiO2 for propane dehydrogenation.Ind Eng Chem Res2020;59:4377-87

[44]

Xu Y,Chang X.Ultrathin TiOx nanosheets rich in tetracoordinated Ti sites for propane dehydrogenation.ACS Catal2023;13:6104-13

[45]

Otroshchenko T,Rodemerck U,Kondratenko EV.ZrO2-based unconventional catalysts for non-oxidative propane dehydrogenation: factors determining catalytic activity.J Catal2017;348:282-90

[46]

Zhang Y,Otroshchenko T.The effect of phase composition and crystallite size on activity and selectivity of ZrO2 in non-oxidative propane dehydrogenation.J Catal2019;371:313-24

[47]

Zhang Y,Otroshchenko T.Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C-H bond activation.Nat Commun2018;9:3794 PMCID:PMC6143600

[48]

Chen K,Iglesia E.The relationship between the electronic and redox properties of dispersed metal oxides and their turnover rates in oxidative dehydrogenation reactions.J Catal2002;209:35-42

[49]

Latimer AA,Aljama H.Understanding trends in C-H bond activation in heterogeneous catalysis.Nat Mater2017;16:225-9

[50]

Konnov SV,Pavlov VS.State-of-the-art strategies for the synthesis of zeolite-encapsulated subnanometric metal clusters.Inorg Chem Front2024;11:3669-706

[51]

Buchmeiser MR.Recent advances in the synthesis of supported metathesis catalysts.New J Chem2004;28:549

[52]

Martínez C.Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes.Coord Chem Rev2011;255:1558-80

[53]

Centi G.Catalytic behavior of V-containing zeolites in the transformation of propane in the presence of oxygen.Appl Catal A Gen1996;143:3-16

[54]

Cola PL, Gläser R, Weitkamp J. Non-oxidative propane dehydrogenation over Pt–Zn-containing zeolites.Appl Catal A Gen2006;306:85-97

[55]

Ponomaryov AB,Pisarenko EV.PtSn/MFI catalysts for propane dehydrogenation prepared by an impregnation–calcination–washing method.Appl Catal A Gen2024;673:119588

[56]

Ponomaryov AB,Pisarenko EV.Enhanced Pt dispersion and catalytic properties of NaCl-promoted Pt/MFI zeolite catalysts for propane dehydrogenation.Micropor Mesopor Mat2022;339:112010

[57]

Liu S,Gong J.Synthesis gold and jade type core shell structure Pt@Sn in deboronated MWW zeolite and its good performance for light alkane dehydrogenation.Chem Eng J2023;476:146410

[58]

Zhang B,Xu M.Recent advances in metal−zeolite catalysts for direct propane dehydrogenation.Energy Fuels2023;37:19419-32

[59]

Wang H,Su Z.Dealuminated Beta stabilized bimetallic PtCo nanoparticles for oxidative dehydrogenation of propane with CO2.Fuel2024;358:130248

[60]

Ryoo R,Jo C.Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis.Nature2020;585:221-4

[61]

Li J,He G.Silanol-stabilized atomically dispersed Ptδ+-Ox-Sn active sites in protozeolite for propane dehydrogenation.J Am Chem Soc2024;146:24358-67

[62]

Ćurković L,Filipan T.Metal ion exchange by natural and modified zeolites.Water Res1997;31:1379-82

[63]

Yuna Z.Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater.Environm Eng Sci2016;33:443-54

[64]

Wang S.Natural zeolites as effective adsorbents in water and wastewater treatment.Chem Eng J2010;156:11-24

[65]

Nozik D,Bell AT.Propane dehydrogenation and cracking over Zn/H-MFI prepared by solid-state ion exchange of ZnCl2.ACS Catal2021;11:14489-506

[66]

Liu H,Qin Q.Comparative study of PtM (M=Cu, Zn, Ga, Mn, Fe, In, Ce) bimetals on zincosilicate for propane dehydrogenation reaction.Chemistry2024;30:e202402764

[67]

Katranas TK,Vlessidis AG.Propane reactions over faujasite structure zeolites type-X and USY: effect of zeolite silica over alumina ratio, strength of acidity and kind of exchanged metal ion.Catal Lett2007;118:79-85

[68]

Englert A.Characterization and environmental application of a Chilean natural zeolite.Int J Miner Process2005;75:21-9

[69]

Alshameri A,Assabri AM,Wang H.The investigation into the ammonium removal performance of Yemeni natural zeolite: modification, ion exchange mechanism, and thermodynamics.Powder Technol2014;258:20-31

[70]

Agrawal S,Sharma V,Munshi P.Catalytic dehydrogenation of cyclohexanone to phenol over the Ru, Rh, Pd and Pt surfaces in sub-critical water.Catal Lett2022;152:2119-30

[71]

Weisz P.Catalysis by crystalline aluminosilicates II. Molecular-shape selective reactions.J Catal1962;1:307-12

[72]

Ou Z,Wu W.Encapsulating subnanometric metal clusters in zeolites for catalysis and their challenges.Chem Eng J2022;430:132925

[73]

Sun Q,Yu J.Advances in catalytic applications of zeolite-supported metal catalysts.Adv Mater2021;33:e2104442

[74]

Qu Z.Advances in zeolite-supported metal catalysts for propane dehydrogenation.Inorg Chem Front2022;9:3095-115

[75]

Otto T,Iglesia E.Synthetic strategies for the encapsulation of nanoparticles of Ni, Co, and Fe oxides within crystalline microporous aluminosilicates.Micropor Mesopor Mat2018;270:10-23

[76]

Otto T,Hong Y.Synthesis of highly dispersed cobalt oxide clusters encapsulated within LTA zeolites.J Catal2017;356:173-85

[77]

Otto T,Giovanetti LJ,Zones SI.Synthesis of stable monodisperse AuPd, AuPt, and PdPt bimetallic clusters encapsulated within LTA-zeolites.J Catal2016;342:125-37

[78]

Goel S,Iglesia E.Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement.J Am Chem Soc2014;136:15280-90

[79]

Wu Z,Choi M.Hydrothermal synthesis of LTA-encapsulated metal clusters and consequences for catalyst stability, reactivity, and selectivity.J Catal2014;311:458-68

[80]

Choi M,Iglesia E.Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation.J Am Chem Soc2010;132:9129-37

[81]

Goel S,Zones SI.Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites.J Am Chem Soc2012;134:17688-95

[82]

Wang Y,Lv X,Yuan Z.Ultrasmall PtZn bimetallic nanoclusters encapsulated in silicalite-1 zeolite with superior performance for propane dehydrogenation.J Catal2020;385:61-9

[83]

Liu L,Lopes CW.Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites.Nat Catal2020;3:628-38

[84]

Liu L,Lopes CW.Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis.Nat Mater2019;18:866-73

[85]

Dou X,Zhang K.Size-dependent structural features of subnanometer PtSn catalysts encapsulated in zeolite for alkane dehydrogenation.ACS Catal2024;14:2859-71

[86]

Zhu J,Ishikawa R.Ultrafast encapsulation of metal nanoclusters into MFI zeolite in the course of its crystallization: catalytic application for propane dehydrogenation.Angew Chem Int Ed Engl2020;59:19669-74

[87]

Song S,Wu Z.In situ encapsulated subnanometric CoO clusters within silicalite-1 zeolite for efficient propane dehydrogenation.AIChE J2022;68:e17451

[88]

Xu G,Dong Z.Ferric single-site catalyst confined in a zeolite framework for propane dehydrogenation.Angew Chem Int Ed Engl2023;62:e202305915

[89]

Liu L,Arenal R,Concepción P.Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D.Nat Mater2017;16:132-8

[90]

Feng H,Libera JA,Stair PC.Palladium catalysts synthesized by atomic layer deposition for methanol decomposition.Chem Mater2010;22:3133-42

[91]

Christensen ST,Libera JL.Supported Ru-Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition.Nano Lett2010;10:3047-51

[92]

Feng H,Stair PC,Elam JW.Subnanometer palladium particles synthesized by atomic layer deposition.ACS Catal2011;1:665-73

[93]

Feng H,Stair PC.Alumina over-coating on Pd nanoparticle catalysts by atomic layer deposition: enhanced stability and reactivity.Catal Lett2011;141:512-7

[94]

Xu D,Gao Y,Wang S.Atomic-scale designing of zeolite based catalysts by atomic layer deposition.Chemphyschem2021;22:1287-301

[95]

Zhang B,Xing S.Small-molecule modification provides Pt nucleation sites for enhanced propane dehydrogenation performance.J Phys Chem C2023;127:5754-62

[96]

Yang F,Chen J.Promoting propane dehydrogenation over Zn/hollow porous silicalite-1 catalysts via modulating the electronic structures of Pt.Fuel2024;364:131163

[97]

Putkonen M,Niinistö L.Analysis of ALD-processed thin films by ion-beam techniques.Anal Bioanal Chem2005;382:1791-9

[98]

Emslie DJ,Price JS.Metal ALD and pulsed CVD: fundamental reactions and links with solution chemistry.Coord Chem Rev2013;257:3282-96

[99]

Li S,Aquino C.Ultimate size control of encapsulated gold nanoparticles.Chem Commun2013;49:8507-9

[100]

Li S,Tuel A,Meunier F.Size-selective hydrogenation at the subnanometer scale over platinum nanoparticles encapsulated in silicalite-1 single crystal hollow shells.Chem Commun2014;50:1824-6

[101]

Pagis C,Farrusseng D,Tuel A.Hollow zeolite structures: an overview of synthesis methods.Chem Mater2016;28:5205-23

[102]

Dai C,Liu M,Song C.Hollow ZSM-5 with silicon-rich surface, double shells, and functionalized interior with metallic nanoparticles and carbon nanotubes.Adv Funct Mater2015;25:7479-87

[103]

Chen Y,Wang X.A reliable protocol for fast and facile constructing multi-hollow silicalite-1 and encapsulating metal nanoparticles within the hierarchical zeolite.Chem Eng J2021;419:129641

[104]

Kubota S,Kitamura H,Uchida Y.Promoted propane dehydrogenation over Co confined within core–shell silicalite-1 zeolite crystals.Catal Sci Technol2024;14:1201-8

[105]

Zhao D,Doronkin DE.In situ formation of ZnOx species for efficient propane dehydrogenation.Nature2021;599:234-8 PMCID:PMC8580824

[106]

Otto T,Iglesia E.Challenges and strategies in the encapsulation and stabilization of monodisperse Au clusters within zeolites.J Catal2016;339:195-208

[107]

Bai L,Zhang Y,Sheng X.Effect of calcination atmosphere on the catalytic properties of PtSnNaMg/ZSM-5 for propane dehydrogenation.Catal Commun2009;10:2013-7

[108]

Jones J,DeLaRiva AT.Thermally stable single-atom platinum-on-ceria catalysts via atom trapping.Science2016;353:150-4

[109]

Liu L,Lopes CW.Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites.J Catal2020;391:11-24

[110]

Gao Y,Long J,Dai Y.Hydrogen pre–reduction determined Co–silica interaction and performance of cobalt catalysts for propane dehydrogenation.Micropor Mesopor Mat2021;323:111187

[111]

Ren Z,Yang M.The investigation into the different Co species over Silicalite-1 via modulating heat-treatment atmosphere for propane dehydrogenation.Mol Catal2022;530:112580

[112]

Wu B,Zhang J.Stabilizing ultra-small bimetallic PtSn clusters within S-1 crystals for effective propane dehydrogenation with low Pt loading.Chem Eng J2024;498:155205

[113]

Hauser AW,Head-Gordon M.A systematic study on Pt based, subnanometer-sized alloy cluster catalysts for alkane dehydrogenation: effects of intermetallic interaction.Phys Chem Chem Phys2016;18:10906-17

[114]

Tait SL,Campbell CT.n-alkanes on Pt(111) and on C(0001)Pt(111): chain length dependence of kinetic desorption parameters.J Chem Phys2006;125:234308

[115]

Wei X,Li Y.Bimetallic clusters confined inside silicalite-1 for stable propane dehydrogenation.Nano Res2023;16:10881-9

[116]

He Y,Zhang Y.Boosting propane dehydrogenation over Sn stabilizing dispersed Ptδ+ confined in Silicalite-1 at low temperature.Fuel2023;352:129044

[117]

Razavian M,Komasi M.Seed-assisted OSDA-free synthesis of ZSM-5 zeolite and its application in dehydrogenation of propane.Mater Res Bull2015;65:253-9

[118]

Razavian M.Synthesis and evaluation of seed-directed hierarchical ZSM-5 catalytic supports: inductive influence of various seeds and aluminosilicate gels on the physicochemical properties and catalytic dehydrogenative behavior.Mater Chem Phys2015;165:55-65

[119]

Razavian M.Synthesis and application of ZSM-5/SAPO-34 and SAPO-34/ZSM-5 composite systems for propylene yield enhancement in propane dehydrogenation process.Micropor Mesopor Mat2015;201:176-89

[120]

Nawaz Z.Integrated bi-modal fluidized bed reactor for butane dehydrogenation to corresponding butylenes.Chem Eng J2014;238:249-53

[121]

Nawaz Z,Jixian G,Wei F.Effect of Si/Al ratio on performance of Pt–Sn-based catalyst supported on ZSM-5 zeolite for n-butane conversion to light olefins.J Ind Eng Chem2010;16:57-62

[122]

Zhang Y,Shi J.Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation.J Mol Catal A Chem2014;381:138-47

[123]

Wang T,Yue Y,Lin M.Bimetallic PtSn nanoparticles confined in hierarchical ZSM-5 for propane dehydrogenation.Chin J Chem Eng2022;41:384-91

[124]

Lezcano-González I,Campbell E.Structure-activity relationships in highly active platinum-Tin MFI-type zeolite catalysts for propane dehydrogenation.ChemCatChem2022;14:e202101828

[125]

Xu Z,Bao X,Zhu H.Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework.ACS Catal2020;10:818-28

[126]

Wang Y,Tian W,Wang Z.Framework-confined Sn in Si-beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability.Catal Sci Technol2019;9:6993-7002

[127]

Ma Y,Guan Y.Skeleton-Sn anchoring isolated Pt site to confine subnanometric clusters within *BEA topology.J Catal2021;397:44-57

[128]

Li B,Chu W,Jing F.Ordered mesoporous Sn-SBA-15 as support for Pt catalyst with enhanced performance in propane dehydrogenation.Chin J Catal2017;38:726-35

[129]

Zhang Y,Huang L,Zhang S.Sn-modified ZSM-5 As support for platinum catalyst in propane dehydrogenation.Ind Eng Chem Res2011;50:7896-902

[130]

Zhang Y,Zhou Y.Propane dehydrogenation over Ce-containing ZSM-5 supported platinum–tin catalysts: Ce concentration effect and reaction performance analysis.RSC Adv2016;6:29410-22

[131]

Zhang Y,Zhang S.Catalytic structure and reaction performance of PtSnK/ZSM-5 catalyst for propane dehydrogenation: influence of impregnation strategy.J Mater Sci2015;50:6457-68

[132]

Zhou H,Xu B,Fan Y.PtSnNa@SUZ-4-catalyzed propane dehydrogenation.Appl Catal A Gen2016;527:30-5

[133]

Zhou H,Xu B.PtSnNa/SUZ-4: an efficient catalyst for propane dehydrogenation.Chin J Catal2017;38:529-36

[134]

Wang P,Liao H.Restructured zeolites anchoring singly dispersed bimetallic platinum and zinc catalysts for propane dehydrogenation.Cell Rep Phys Sci2023;4:101311

[135]

Han SW,Han J.PtZn intermetallic compound nanoparticles in mesoporous zeolite exhibiting high catalyst durability for propane dehydrogenation.ACS Catal2021;11:9233-41

[136]

Zhang L,Liu C.Demetallation and reduction induced ultra-dispersed PtZn alloy confined in zeolite for propane dehydrogenation.Chin J Catal2023;55:241-52

[137]

Zhang B,Liu S.Boosting propane dehydrogenation over PtZn encapsulated in an epitaxial high-crystallized zeolite with a low surface barrier.ACS Catal2022;12:1310-4

[138]

Zhang Y,Huang L.Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation.Chem Eng J2015;270:352-61

[139]

Chen C,Hu Z,Zhang S.New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene.Catal Sci Technol2019;9:1979-88

[140]

Qu Z,Yin X,Xiong X.Zeolite-encaged ultrasmall Pt-Zn species with trace amount of Pt for efficient propane dehydrogenation.Chem Res Chin Univ2023;39:870-6

[141]

Zhu X,Su Y.Propane dehydrogenation over PtZn localized at Ti sites on TS-1 zeolite.Catal Sci Technol2021;11:4482-90

[142]

Xie L,Sun L.Optimizing zeolite stabilized Pt-Zn catalysts for propane dehydrogenation.J Energy Chem2021;57:92-8

[143]

Bian K,Wang M.Promoting propane dehydrogenation over PtFe bimetallic catalysts by optimizing the state of Fe species.Chem Eng Sci2023;275:118748

[144]

Cai W,Zha S.Subsurface catalysis-mediated selectivity of dehydrogenation reaction.Sci Adv2018;4:eaar5418 PMCID:PMC6086612

[145]

Miao C,Tan S.Pt–Sn nanoalloys on Sn-Beta zeolite for efficient propane dehydrogenation.Micropor Mesopor Mat2023;361:112736

[146]

Zhou S,Jing F.Effects of dopants in PtSn/M-Silicalite-1 on structural property and on catalytic propane dehydrogenation performance.ChemistrySelect2020;5:4175-85

[147]

Qiu Y,Zhang Y.Various metals (Ce, In, La, and Fe) promoted Pt/Sn-SBA-15 as highly stable catalysts for propane dehydrogenation.Ind Eng Chem Res2019;58:10804-18

[148]

Wang Y,Lv X,Yuan ZY.Enhanced performances of bimetallic Ga-Pt nanoclusters confined within silicalite-1 zeolite in propane dehydrogenation.J Colloid Interface Sci2021;593:304-14

[149]

Zhang B,Zhai Z,Liu G.Subsurface-regulated PtGa nanoparticles confined in Silicalite-1 for propane dehydrogenation.ACS Appl Mater Interfaces2021;13:16259-66

[150]

Luo L,Li W.Close intimacy between PtIn clusters and zeolite channels for ultrastability toward propane dehydrogenation.Nano Lett2024:7236-43

[151]

Zhou J,Xiong C.Potassium-promoted Pt–In bimetallic clusters encapsulated in silicalite-1 zeolite for efficient propane dehydrogenation.Chem Eng J2023;455:139794

[152]

Li S,Li B.Efficient dehydrogenation of propane to propene over PtIn nanoclusters encapsulated in hollow-structured Silicalite-1.ACS Catal2024;14:17825-36

[153]

Zhou J,Liu H.Enhanced performance for propane dehydrogenation through Pt clusters alloying with copper in zeolite.Nano Res2023;16:6537-43

[154]

Zhang X,Liu C.Pt–Cu alloy nanoparticles encapsulated in Silicalite-1 molecular sieve: coke-resistant catalyst for alkane dehydrogenation.Catal Lett2019;149:974-84

[155]

Zhou J,Qin Y.Bimetallic CoCu-modified Pt species in S-1 zeolite with enhanced stability for propane dehydrogenation.J Colloid Interface Sci2024;663:94-102

[156]

Zhu X,Wang X.High active and stable structure of PtBi0.5K4/Si-Beta catalyzing propane dehydrogenation.Chem Eng J2023;474:145894

[157]

Liu M,Zhang Y.Highly dispersed and stable NiSn subnanoclusters encapsulated within Silicalite-1 zeolite for efficient propane dehydrogenation.Fuel2024;357:130069

[158]

Qi L,Zhang Y.Propane dehydrogenation catalyzed by isolated Pt atoms in ≡SiOZn-OH nests in dealuminated zeolite beta.J Am Chem Soc2021;143:21364-78

[159]

Qi L,Babucci M.Dehydrogenation of propane and n-butane catalyzed by isolated PtZn4 sites supported on self-pillared zeolite pentasil nanosheets.ACS Catal2022;12:11177-89

[160]

Ma Y,Liu C.Germanium-enriched double-four-membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation.Nat Catal2023;6:506-18

[161]

Zhang L,Ma Y.Single Pt coordinated with framework Fe in MWW-type ferrisilicate toward efficient propane dehydrogenation.ACS Catal2024;14:9431-9

[162]

Liu H,Chen T.Isolated Pt species anchored by hierarchical-like heteroatomic Fe-Silicalite-1 catalyze propane dehydrogenation near the thermodynamic limit.ACS Catal2023;13:2928-36

[163]

Zhang Y,Deng H.Synergistic mechanism of isolated Fe3+ and highly dispersed Ptδ+ over zeolite for boosting propane dehydrogenation.AIChE J2023;69:e18249

[164]

Zhang H,Bin Samsudin I.Mg-stabilized subnanometer Rh particles in zeolite Beta as highly efficient catalysts for selective hydrogenation.J Catal2022;405:489-98

[165]

Wang H,Su Z.Amorphous CeOx islands on dealuminated zeolite beta to stabilize Pt nanoparticles as efficient and antisintering catalysts for propane dehydrogenation.Langmuir2023;39:18366-79

[166]

Zhu C,Chen T.Boosting the stability of subnanometer Pt catalysts by the presence of framework indium(III) sites in zeolite.Angew Chem Int Ed Engl2024;63:e202409784

[167]

Liao H,Wu L,Wang P.Anchoring Pt sites via chemical confining functional ZnOx islands in propane dehydrogenation.Fuel2024;369:131730

[168]

Lefton NG.Effects of structure on the activity, selectivity, and stability of Pt-Sn-DeAlBEA for propane dehydrogenation.ACS Catal2024;14:3986-4000

[169]

Liu H,Zhang Y,Tang M.Effect of preparation processes on catalytic performance of PtSnNa/ZSM-5 for propane dehydrogenation.Ind Eng Chem Res2009;48:5598-603

[170]

Grasselli RK,Tsikoyiannis JG.Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC).Appl Catal A Gen1999;189:1-8

[171]

Ghashghaee M.Applicability of protolytic mechanism to steady-state heterogeneous dehydrogenation of ethane revisited.Micropor Mesopor Mat2013;170:318-30

[172]

Wang Z,Liu G.Thermal stable Pt clusters anchored by K/TiO2–Al2O3 for efficient cycloalkane dehydrogenation.Chin J Chem Eng2024;72:187-98

[173]

Yang G,Chen Y,Lang W.Improved propylene selectivity and superior catalytic performance of Ga-xMg/ZSM-5 catalysts for propane dehydrogenation (PDH) reaction.Appl Catal A Gen2022;643:118778

[174]

Zhao D,Han S.Controlling reaction-induced loss of active sites in ZnOx/Silicalite-1 for durable nonoxidative propane dehydrogenation.ACS Catal2022;12:4608-17

[175]

Song S,Zhang P.Silicalite-1 stabilizes Zn-hydride species for efficient propane dehydrogenation.ACS Catal2022;12:5997-6006

[176]

Chen C,Ren J,Wang Z.ZnO nanoclusters supported on dealuminated zeolite β as a novel catalyst for direct dehydrogenation of propane to propylene.ChemCatChem2019;11:868-77

[177]

Chen C,Wang Z.Ultrasmall Co confined in the silanols of dealuminated beta zeolite: a highly active and selective catalyst for direct dehydrogenation of propane to propylene.J Catal2020;383:77-87

[178]

Yang F,Chen J.Boosting propane dehydrogenation of defective S-1 stabilized single-atom Pt and ZnO catalysts via coordination environment regulation.Nano Res2024;17:5884-96

[179]

Kerstens D,Van Waeyenberg J,Yu J.State of the art and perspectives of hierarchical zeolites: practical overview of synthesis methods and use in catalysis.Adv Mater2020;32:e2004690

[180]

Rodaum C,Nunthakitgoson W.Highly efficient propane dehydrogenation promoted by reverse water–gas shift reaction on Pt-Zn alloy surfaces.Fuel2022;325:124833

[181]

Zhou S,Zhang Y,Zhang Z.The synthesis of new coke-resistant support and its application in propane dehydrogenation to propene.J Chem Technol Biotechnol2016;91:1072-81

[182]

Feliczak-guzik A.Hierarchical zeolites: synthesis and catalytic properties.Micropor Mesopor Mat2018;259:33-45

[183]

Gounder R.Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites.J Am Chem Soc2009;131:1958-71

[184]

Bulánek R.Oxidative dehydrogenation of propane over pentasil ring Co-zeolites.Pol J Chem2004;78:149-58https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BUJ1-0023-0153. (accessed 13 Jun 2025)

[185]

Yuan Y,Hwang S,Chen JG.Confining platinum clusters in indium-modified ZSM-5 zeolite to promote propane dehydrogenation.Nat Commun2024;15:6529 PMCID:PMC11297129

[186]

Gong T,Lu J.ZnO modified ZSM-5 and Y zeolites fabricated by atomic layer deposition for propane conversion.Phys Chem Chem Phys2016;18:601-14

[187]

Choi S,So J.Propane dehydrogenation catalyzed by gallosilicate MFI zeolites with perturbed acidity.J Catal2017;345:113-23

[188]

Nakai M,Inoue R.Dehydrogenation of propane over high silica *BEA type gallosilicate (Ga-Beta).Catal Sci Technol2019;9:6234-9

[189]

Schreiber MW,Baumgärtl M.Lewis-Brønsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes.J Am Chem Soc2018;140:4849-59

[190]

Siddiqi G,Galvita V.Catalyst performance of novel Pt/Mg(Ga)(Al)O catalysts for alkane dehydrogenation.J Catal2010;274:200-6

[191]

Li Q,Zhou X,Zhou J.Coke formation on Pt–Sn/Al2O3 catalyst in propane dehydrogenation: coke characterization and kinetic study.Top Catal2011;54:888-96

[192]

Yang M,Zhu Y.Tuning selectivity and stability in propane dehydrogenation by shaping Pt particles: a combined experimental and DFT study.J Mol Catal A Chem2014;395:329-36

[193]

Wang L,Meng X.New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts.Adv Mater2019;31:e1901905

[194]

Wang N,Guan Y,Xu H.Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation.Chin J Struct Chem2024;43:100248

[195]

Wan H,Liu L.Solid catalysts for the dehydrogenation of long-chain alkanes: lessons from the dehydrogenation of light alkanes and homogeneous molecular catalysis.Sci China Chem2022;65:2163-76

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/