Modulating oxygen vacancies in Pt-WOx-decorated MOF-74(Co) catalysts for the efficient conversion of glucose to 1,2-propanediol under mild conditions

Shuang Luo , Min Mao , Haijie Yu , Yuxin Zheng , Zhaohui Liu , Lingmei Liu , Jianjian Wang

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) : 35

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) :35 DOI: 10.20517/cs.2024.197
review-article

Modulating oxygen vacancies in Pt-WOx-decorated MOF-74(Co) catalysts for the efficient conversion of glucose to 1,2-propanediol under mild conditions

Author information +
History +
PDF

Abstract

Selective conversion of glucose to valuable 1,2-propanediol (1,2-PDO) has been a research priority, but the process often suffers from problems such as harsh reaction conditions. Therefore, the development of efficient catalysts for the efficient synthesis of 1,2-PDO from glucose under mild conditions is essential. Herein, we prepared Pt-WOx-metal-organic framework (MOF)-74(Co) catalysts by a simple two-step method, achieving a high yield of 52.9% of 1,2-PDO under milder conditions (160 °C, 0.2 MPa H2, 4 h), surpassing the majority of recent studies in this field. High-resolution transmission electron microscopy (HRTEM) revealed that Pt nanoparticles (~2.1 nm) and WOx species were uniformly dispersed within the structure of MOF-74(Co). The experimental results confirmed that MOF-74(Co) facilitated the isomerization of glucose into fructose, which then underwent further conversion to yield 1,2-PDO. In addition, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) and NH3 temperature-programmed desorption (NH3-TPD) results revealed that Pt-WOx-MOF-74(Co) has more oxygen vacancies to act as acidic sites. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) further confirmed the efficient conversion of glucose to intermediate and final products over Pt-WOx-MOF-74(Co). Furthermore, cycling experiments confirmed that Pt-WOx-MOF-74(Co) can be reused several times. This is the first report that MOFs can be employed as the catalyst support in facilitating glucose conversion to diols, which provides important guidance for using MOFs in biomass utilization in the future.

Keywords

Biomass / MOF-74(Co) / Pt nanoparticles / WOx species / oxygen vacancies / 1 / 2-propanediol

Cite this article

Download citation ▾
Shuang Luo, Min Mao, Haijie Yu, Yuxin Zheng, Zhaohui Liu, Lingmei Liu, Jianjian Wang. Modulating oxygen vacancies in Pt-WOx-decorated MOF-74(Co) catalysts for the efficient conversion of glucose to 1,2-propanediol under mild conditions. Chemical Synthesis, 2025, 5(2): 35 DOI:10.20517/cs.2024.197

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang H,Zhang H.Toward effective electrocatalytic C–N coupling for the synthesis of organic nitrogenous compounds using CO2 and biomass as carbon sources.SusMat2023;3:781-820

[2]

Wu X,Wang H.Heterostructured catalytic materials as advanced electrocatalysts: classification, synthesis, characterization, and application.Adv Funct Mater2024;34:2404535

[3]

Zhang Z,Han B.Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids.Chem Rev2017;117:6834-80

[4]

Sudarsanam P,Van den Bosch S,Parvulescu VI.Functionalised heterogeneous catalysts for sustainable biomass valorisation.Chem Soc Rev2018;47:8349-402

[5]

Mane R,Rode C.A review on non-noble metal catalysts for glycerol hydrodeoxygenation to 1,2-propanediol with and without external hydrogen.Green Chem2022;24:6751-81

[6]

Zhao H,Li X,Hou Z.Hydrogenolysis of glycerol to 1,2-propanediol over Cu-based catalysts: a short review.Catal Today2020;355:84-95

[7]

Główka M.New trends and perspectives in production of 1,2-propanediol.ACS Sustain Chem Eng2023;11:7274-87

[8]

Zheng M,Sun R,Zhang T.Selectivity control for cellulose to diols: dancing on eggs.ACS Catal2017;7:1939-54

[9]

Gu M,Yang L.Reaction route selection for cellulose hydrogenolysis into C2/C3 glycols by ZnO-modified Ni-W/β-zeolite catalysts.Sci Rep2019;9:11938 PMCID:PMC6697703

[10]

Pang J,Li X.Selective conversion of concentrated glucose to 1,2-propylene glycol and ethylene glycol by using RuSn/AC catalysts.Appl Catal B Environ2018;239:300-8

[11]

Yazdani P,Du Y,Borgna A.Lanthanum oxycarbonate modified Cu/Al2O3 catalysts for selective hydrogenolysis of glucose to propylene glycol: base site requirements.Catal Sci Technol2017;7:4680-90

[12]

Kirali AA, Sreekantan S, Marimuthu B. Ce promoted Cu/γ-Al2O3 catalysts for the enhanced selectivity of 1,2-propanediol from catalytic hydrogenolysis of glucose.Catal Commun2022;165:106447

[13]

Baniamerian H,Beier MJ.Catalytic conversion of sugars and polysaccharides to glycols: a review.Appl Catal B Environ2023;330:122650

[14]

Yang Y,Shang C,Luo X.Site isolated Ru clusters and sulfoacids in a yolk-shell nanoreactor towards cellulose valorization to 1,2-propylene glycol.Chem Eng J2023;452:139206

[15]

Xin Q,Jiang L.Bifunctional catalyst with a Yolk–Shell structure catalyzes glucose to produce ethylene glycol.J Phys Chem C2021;125:6632-42

[16]

Yazdani P,Rimaz S,Borgna A.Glucose hydrogenolysis over Cu-La2O3/Al2O3: mechanistic insights.Mol Catal2019;466:138-45

[17]

Gu M,Zhang W.Hydrogenolysis of glucose into propylene glycol over Pt/SiO2@Mg(OH)2 catalyst.ChemCatChem2020;12:3447-52

[18]

Lv M,Xin Q.Pd@Al-containing mesoporous silica Yolk–Shell-structured nanospheres as high performance nanoreactors for the selective hydrogenolysis of glucose to 1,2-propylene glycol.Chem Eng J2020;396:125274

[19]

Liu C,Sun S.Effect of WOx on bifunctional Pd–WOx/Al2O3 catalysts for the selective hydrogenolysis of glucose to 1,2-propanediol.ACS Catal2015;5:4612-23

[20]

Ji J,Liu Y.A nanosheet Ru/WO3 catalyst for efficient conversion of glucose to butanediol.Catal Commun2020;144:106074

[21]

Liu Y,Zhang Y.The synergistic effects of Ru and WOx for aqueous-phase hydrogenation of glucose to lower diols.Appl Catal B Environ2019;242:100-8

[22]

Luo S,Mao M.Efficient hydrogenolysis of fructose to 1,2-propanediol over bifunctional Ru-WO-MgO catalysts under mild reaction conditions via enhancing the chemoselective cleavage of C–C bonds.J Energy Chem2024;92:311-21

[23]

Lee TH,Kim YJ.Defect engineering in metal-organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation.Angew Chem Int Ed Engl2021;60:13081-8

[24]

Cai G.A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability.Angew Chem Int Ed Engl2017;56:563-7

[25]

Jiao L,Skinner WS,Jiang H.Metal–organic frameworks: structures and functional applications.Mater Today2019;27:43-68

[26]

Huang G,Xu Q,Jiang H.Polydimethylsiloxane coating for a palladium/MOF composite: highly improved catalytic performance by surface hydrophobization.Angew Chem Int Ed Engl2016;128:7505-9

[27]

Insyani R,Cahyadi HS.One-pot di- and polysaccharides conversion to highly selective 2,5-dimethylfuran over Cu-Pd/Amino-functionalized Zr-based metal-organic framework (UiO-66(NH2))@SGO tandem catalyst.Appl Catal B Environ2019;243:337-54

[28]

Heidary N,Guiet A.Rational incorporation of defects within metal-organic frameworks generates highly active electrocatalytic sites.Chem Sci2021;12:7324-33 PMCID:PMC8171315

[29]

Li Z,Sun W.One-step synthesis of single palladium atoms in WO2.72 with high efficiency in chemoselective hydrodeoxygenation of vanillin.Appl Catal B Environ2021;298:120535

[30]

Wu D,Yin X.Metal-organic frameworks as cathode materials for Li-O2 batteries.Adv Mater2014;26:3258-62

[31]

Yang Q,Li C.Highly dispersed Pt on partial deligandation of Ce-MOFs for furfural selective hydrogenation.Appl Catal B Environ2023;328:122458

[32]

Wang M,Peng CK.Site-specified two-dimensional heterojunction of Pt nanoparticles/metal-organic frameworks for enhanced hydrogen evolution.J Am Chem Soc2021;143:16512-8

[33]

Zahid M,Sohail M.Improving selective hydrogenation of carbonyls bond in α, β-unsaturated aldehydes over Pt nanoparticles encaged within the amines-functionalized MIL-101-NH2.J Colloid Interface Sci2022;628:141-52

[34]

Deng X,Huang H.Shape-defined hollow structural Co-MOF-74 and metal nanoparticles@Co-MOF-74 composite through a transformation strategy for enhanced photocatalysis performance.Small2019;15:e1902287

[35]

Sing KSW.Physisorption hysteresis loops and the characterization of nanoporous materials.Adsorpt Sci Technol2004;22:773-82https://www.researchgate.net/publication/42790927_Physisorption_Hysteresis_Loops_and_the_Characterization_of_Nanoporous_Materials. (accessed on 2025-03-14)

[36]

Wang Z,Zhang Z,Wang J.Effects of different Al2O3 supports on Pt/WOx-based catalysts for selective hydrogenolysis of glucose to 1,2-propylene glycol.ACS Sustain Chem Eng2023;11:17331-9

[37]

Feng Y,Cui P.Ultrahigh photocatalytic CO2 reduction efficiency and selectivity manipulation by single-tungsten-atom oxide at the atomic step of TiO2.Adv Mater2022;34:e2109074

[38]

Xiao L,Yang Z.Engineering of amorphous PtOx interface on Pt/WO3 nanosheets for ethanol oxidation electrocatalysis.Adv Funct Mater2021;31:2100982

[39]

Cao Y,Kang M.Catalytic conversion of glucose and cellobiose to ethylene glycol over Ni–WO3/SBA-15 catalysts.RSC Adv2015;5:90904-12

[40]

Hamdy MS,Keshk SMAS.New catalyst with multiple active sites for selective hydrogenolysis of cellulose to ethylene glycol.Green Chem2017;19:5144-51

[41]

Wang F,Xu J.Detection and measurement of surface electron transfer on reduced molybdenum oxides (MoOx) and catalytic activities of Au/MoOx.Angew Chem Int Ed Engl2012;51:3883-7

[42]

Zhao X,Yang M.Selective hydrogenolysis of glycerol to 1,3-propanediol: manipulating the frustrated lewis pairs by introducing gold to Pt/WOx.ChemSusChem2017;10:818

[43]

Idriss H.On the wrong assignment of the XPS O1s signal at 531-532 eV attributed to oxygen vacancies in photo- and electro-catalysts for water splitting and other materials applications.Surf Sci2021;712:121894

[44]

Morgan DJ.Photoelectron spectroscopy of ceria: reduction, quantification and the myth of the vacancy peak in XPS analysis.Surf Interf Anal2023;55:845-50

[45]

Frankcombe TJ.Interpretation of oxygen 1s X-ray photoelectron spectroscopy of ZnO.Chem Mater2023;35:5468-74

[46]

Wang B,Liu L,Zhang Y.WO3 nanosheet/W18O49 nanowire composites for NO2 sensing.ACS Appl Nano Mater2020;3:5473-80

[47]

Wang Z,Huo Y,Wang L.Formation, detection, and function of oxygen vacancy in metal oxides for solar energy conversion.Adv Funct Mater2022;32:2109503

[48]

Liu J,Yu X,Li M.Constructing Ag decorated ZnS1-x quantum dots/Ta2O5-x nanospheres for boosted tetracycline removal: synergetic effects of structural defects, S-scheme heterojunction, and plasmonic effects.J Colloid Interf Sci2022;623:1085-100

[49]

Li Y,Liu Y.Bimetallic PtRu alloy nanocrystal-functionalized flower-like WO3 for fast detection of xylene.Sensor Actuat B Chem2022;351:130950

[50]

Pei Y,Pei X.Xylene adsorption behaviors of Co-MOF-74(X) synthesized from Co(II) salt with different anions.Inorg Chim Acta2024;568:122083

[51]

Yin D,Chai D.A WOx mediated interface boosts the activity and stability of Pt-catalyst for alkaline water splitting.Chem Eng J2022;431:133287

[52]

Ming X,Wang G.Two-dimensional defective tungsten oxide nanosheets as high performance photo-absorbers for efficient solar steam generation.Sol Energy Mater Sol Cells2018;185:333-41

[53]

Bo Y,Lin Y.Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant.Angew Chem Int Ed Engl2021;60:16085-92

[54]

Zholobenko V,Jendrlin M,Travert A.Probing the acid sites of zeolites with pyridine: quantitative AGIR measurements of the molar absorption coefficients.J Catal2020;385:52-60

[55]

Xu W,Jiang X.Effect of calcium addition in plasma catalysis for toluene removal by Ni/ZSM-5: acidity/basicity, catalytic activity and reaction mechanism.J Hazard Mater2020;387:122004

[56]

Dai G,Wang G.Initial pyrolysis mechanism of cellulose revealed by in-situ DRIFT analysis and theoretical calculation.Combust Flame2019;208:273-80

[57]

Leng E,Peng Y.In situ structural changes of crystalline and amorphous cellulose during slow pyrolysis at low temperatures.Fuel2018;216:313-21

[58]

Wang S,Ru B.Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose.Energy2017;120:864-71

[59]

Agarwal V,Huber GW.Ab initio dynamics of cellulose pyrolysis: nascent decomposition pathways at 327 and 600 °C.J Am Chem Soc2012;134:14958-72

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/