Selective syngas conversion to olefins over bifunctional Zn2Al3O4/PLS-3 catalyst

Jie Tuo , Xianchen Gong , Zhenteng Sheng , Qi Yang , Hao Xu , Yejun Guan , Peng Wu

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (3) : 53

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (3) :53 DOI: 10.20517/cs.2024.194
review-article

Selective syngas conversion to olefins over bifunctional Zn2Al3O4/PLS-3 catalyst

Author information +
History +
PDF

Abstract

Designing zeolites with novel topologies and tunable acidity to construct metal oxide-zeolite bifunctional catalytic systems for targeted transformation of syngas into high-value olefins has aroused wide interest. PLS-3 aluminosilicates with the FER topology and unique nanorod crystal morphology, derived from layered precursors with a wide Si/Al ratio range of 50-300, were applied to combine with Zn2Al3O4 oxide, constructing bifunctional catalysts for selective syngas conversion reaction. The lower Al content in PLS-3 zeolite led to decreased acid amount and the preferred distribution of framework Al atoms in specific tetrahedral locations (T2 and T4), which promoted the formation of ethylene. High-silica PLS-3 (Si/Al = 250) combined with Zn2Al3O4 oxide showed high selectivity for C2-5= (78.5%), especially for ethylene (45%), and high ratios of ethylene to propylene (E/P, 7.0) and olefin to paraffin (O/P, 21.2). Furthermore, the in-situ infrared spectra evidenced that the syngas conversion over Zn2Al3O4/PLS-3 catalyst possibly followed the carbonylation route.

Keywords

PLS-3 zeolite / bifunctional catalyst / olefins / syngas conversion

Cite this article

Download citation ▾
Jie Tuo, Xianchen Gong, Zhenteng Sheng, Qi Yang, Hao Xu, Yejun Guan, Peng Wu. Selective syngas conversion to olefins over bifunctional Zn2Al3O4/PLS-3 catalyst. Chemical Synthesis, 2025, 5(3): 53 DOI:10.20517/cs.2024.194

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Han Q,Chen K.Synergistic interplay of dual active sites on spinel ZnAl2O4 for syngas conversion.Chem2023;9:721-38

[2]

Lyu S,Qian J.Role of residual CO molecules in OX–ZEO relay catalysis for syngas direct conversion.ACS Catal2021;11:4278-87

[3]

Wang S,Shi D.Direct conversion of syngas into light olefins with low CO2 emission.ACS Catal2020;10:2046-59

[4]

Torres Galvis, H. M.; de Jong, K. P. Catalysts for production of lower olefins from synthesis gas: a review.ACS Catal2013;3:2130-49

[5]

Ren L,Wang B.Syngas to light olefins over ZnAlOx and high-silica CHA prepared by boron-assisted hydrothermal synthesis.Fuel2022;307:121916

[6]

Torres Galvis, H. M.; Bitter, J. H.; Khare, C. B.; Ruitenbeek, M.; Dugulan, A. I.; de Jong, K. P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins.Science2012;335:835-8

[7]

Zhong L,An Y.Cobalt carbide nanoprisms for direct production of lower olefins from syngas.Nature2016;538:84-7

[8]

Sun Q,Yu J.Advances in catalytic applications of zeolite-supported metal catalysts.Adv Mater2021;33:e2104442

[9]

Song F,Wu X.FeMn@HZSM-5 capsule catalyst for light olefins direct synthesis via Fischer-Tropsch synthesis: Studies on depressing the CO2 formation.Appl Catal B Environ2022;300:120713

[10]

Qiu T,Lv S.SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins.Fuel2017;203:811-6

[11]

Ni Y,Chen Z.Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst.ACS Catal2019;9:1026-32

[12]

Jiao F,Pan X.Selective conversion of syngas to light olefins.Science2016;351:1065-8

[13]

Cheng K,Liu X,Zhang Q.Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling.Angew Chem Int Ed Engl2016;55:4725-8

[14]

Wang C,Xie Z.Methylation of olefins with ketene in zeotypes and its implications for the direct conversion of syngas to light olefins: a periodic DFT study.Catal Sci Technol2016;6:6644-9

[15]

Pan X,Miao D.Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis.Chem Rev2021;121:6588-609

[16]

Chen K,Wang Y.Relay catalysis for highly selective conversion of methanol to ethylene in syngas.JACS Au2023;3:2894-904 PMCID:PMC10598826

[17]

Zhu Y,Jiao F.Role of manganese oxide in syngas conversion to light olefins.ACS Catal2017;7:2800-4

[18]

Liu X,Yang Y.Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates.Chem Sci2018;9:4708-18 PMCID:PMC5969498

[19]

Su J,Liu S.Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts.Nat Commun2019;10:1297 PMCID:PMC6428864

[20]

Li G,Pan X.Role of SAPO-18 acidity in direct syngas conversion to light olefins.ACS Catal2020;10:12370-5

[21]

Su J,Zhou H.Unveiling the anti-trap effect for bridging intermediates on ZnAlOx/AlPO-18 bifunctional catalysts to boost syngas to olefin conversion.ACS Catal2023;13:2472-81

[22]

Wang M,Xiong X.Effect of zeolite topology on the hydrocarbon distribution over bifunctional ZnAlO/SAPO catalysts in syngas conversion.Catal Today2021;371:85-92

[23]

Jiao F,Gong K,Li G.Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate.Angew Chem Int Ed Engl2018;57:4692-6

[24]

Jiao F,Li G.Disentangling the activity-selectivity trade-off in catalytic conversion of syngas to light olefins.Science2023;380:727-30

[25]

Tuo J,Wang Y.Promoting syngas to olefins with isolated internal silanols-enriched Al-IDM-1 aluminosilicate nanosheets.Angew Chem Int Ed Engl2023;62:e202313785

[26]

Tuo J,Gong X.Ferrierite nanosheets with preferential Al locations as catalysts for carbonylation of dimethyl ether.Fuel2024;357:130001

[27]

Dai W,Deng X.Synthesis and catalytic application of nanorod-like FER-type zeolites.J Mater Chem A2021;9:24922-31

[28]

Yang B,Xu H,Peng H.Selective skeletal isomerization of 1-butene over FER-type zeolites derived from PLS-3 lamellar precursors.Appl Catal A Gen2013;455:107-13

[29]

Tuo J,Fan S.One-pot synthesis of [Mn,H]ZSM-5 and the role of Mn in methanol-to-propylene reaction.Fuel2022;308:121995

[30]

Tuo J,Yang N.Direct synthesis of [B,H]ZSM-5 by a solid-phase method: AlF siting and catalytic performance in the MTP reaction.Catal Sci Technol2020;10:7034-45

[31]

Liu R,Sun T.Selective removal of acid sites in mordenite zeolite by trimethylchlorosilane silylation to improve dimethyl ether carbonylation stability.ACS Catal2022;12:4491-500

[32]

Gong Y,Li S.Direct synthesis of IDM-1 aluminosilicate nanosheets with improved MTP performance.Chem Commun2023;59:724-7

[33]

Li S,Wan Z.A nanostrips-assemble morphology of ZSM-5 zeolite for efficient propylene production from methanol conversion.ACS Sustain Chem Eng2023;11:10274-83

[34]

Ding Y,Pan X.Effects of proximity-dependent metal migration on bifunctional composites catalyzed syngas to olefins.ACS Catal2021;11:9729-37

[35]

Xie M,Liu H.Cyclic oxygenate-based deactivation mechanism in dimethyl ether carbonylation reaction over a pyridine-modified H-MOR catalyst.ACS Catal2023;13:14327-33

[36]

Xiong Z,Li M.DME carbonylation over a HSUZ-4 zeolite.Chem Commun2020;56:3401-4

[37]

Ma K,Dou M,Dai C.Enhancing the stability of methanol-to-olefins reaction catalyzed by SAPO-34 zeolite in the presence of CO2 and oxygen-vacancy-rich ZnCeZrOx.ACS Catal2024;14:594-607

[38]

Liu J,Huang X.Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine.Chin J Catal2010;31:729-38

[39]

Zhou H,Shi L.In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on H-mordenite.J Mol Catal A Chem2016;417:1-9

[40]

Cheung P,Sunley G,Iglesia E.Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites.J Catal2007;245:110-23

[41]

Plessow PN.Unraveling the mechanism of the initiation reaction of the methanol to olefins process using ab initio and DFT calculations.ACS Catal2017;7:7987-94

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/